Finding strong pseudoprimes to several bases. II,Math

by Zhenxiang Zhang , Min Tang
Venue:Department of Mathematics, Anhui Normal University
Citations:1 - 1 self

Active Bibliography

TWO KINDS OF STRONG PSEUDOPRIMES UP TO 10 36 – Zhenxiang Zhang
NOTES ON SOME NEW KINDS OF PSEUDOPRIMES – Zhenxiang Zhang
2 A one-parameter quadratic-base version of the Baillie–PSW probable prime test – Zhenxiang Zhang
MO419 – Probabilistic Algorithms – Flávio K. Miyazawa – IC/UNICAMP 2010 A survey on Probabilistic Algorithms to Primality Test – Marcio Machado, Pereira Ra, Marco Alves, Ganhoto Ra
9 Implementation Of The Atkin-Goldwasser-Kilian Primality Testing Algorithm – François Morain - 1988
11 A Probable Prime Test With High Confidence – Jon Grantham
1 The Pseudosquares Prime Sieve – Jonathan P. Sorenson
Primality testing – Richard P. Brent - 2003
3 Primality testing – Richard P - 1992
A GENERALIZATION OF MILLER’S PRIMALITY THEOREM PEDRO BERRIZBEITIA AND AURORA OLIVIERI – Communicated Ken Ono
22 The Generation of Random Numbers That Are Probably Prime – Pierre Beauchemin, Gilles Brassard, Claude Crepeau, Claude Goutier, Carl Pomerance - 1988
.1 Primality testing cont'd. – The Miller-Rabin Primality
10 Nagaraj, Density of Carmichael numbers with three prime factors – R. Balasubramanian, S. V. Nagaraj
150 Signature Schemes Based on the Strong RSA Assumption – Ronald Cramer, Victor Shoup - 1998
3 The Rabin-Monier theorem for Lucas pseudoprimes – F. Arnault - 1997
5 Primality Testing Revisited – J.H. Davenport - 1992
Improved Bounds for Goldback Conjecture – Yannick Saouter
3 Further investigations with the strong probable prime test – Ronald Joseph Burthe - 1996
3 Two Observations on Probabilistic Primality Testing – Pierre Beauchemin, Gilles Brassard, Claude Crepeau, Claude Goutier, Universite De Montreal C. P - 1987