A one-parameter quadratic-base version of the Baillie–PSW probable prime test

by Zhenxiang Zhang
Venue:Math. Comp
Citations:2 - 0 self

Active Bibliography

1 Finding strong pseudoprimes to several bases. II,Math – Zhenxiang Zhang, Min Tang
ABSOLUTE QUADRATIC PSEUDOPRIMES – Richard G. E. Pinch
11 A Probable Prime Test With High Confidence – Jon Grantham
TWO KINDS OF STRONG PSEUDOPRIMES UP TO 10 36 – Zhenxiang Zhang
NOTES ON SOME NEW KINDS OF PSEUDOPRIMES – Zhenxiang Zhang
A GENERALIZATION OF MILLER’S PRIMALITY THEOREM PEDRO BERRIZBEITIA AND AURORA OLIVIERI – Communicated Ken Ono
MO419 – Probabilistic Algorithms – Flávio K. Miyazawa – IC/UNICAMP 2010 A survey on Probabilistic Algorithms to Primality Test – Marcio Machado, Pereira Ra, Marco Alves, Ganhoto Ra
3 Some Primality Testing Algorithms – R.G.E. Pinch - 1993
Parallel Computation Skeletons with Premature Termination Property – Oleg Lobachev
23 Information and Computation: Classical and Quantum Aspects – A. Galindo, M. A. Martín-delgado - 2001
9 Implementation Of The Atkin-Goldwasser-Kilian Primality Testing Algorithm – François Morain - 1988
1 The Pseudosquares Prime Sieve – Jonathan P. Sorenson
Primality testing – Richard P. Brent - 2003
3 Primality testing – Richard P - 1992
22 The Generation of Random Numbers That Are Probably Prime – Pierre Beauchemin, Gilles Brassard, Claude Crepeau, Claude Goutier, Carl Pomerance - 1988
.1 Primality testing cont'd. – The Miller-Rabin Primality
An Image Matching Approach based on String Matching using Remainder-Prime Method – Ravendra Singh, Rkdfist Bhopal, Jasvinder Pal Singh, Rkdfist Bhopal
22 Primality testing using elliptic curves – Shafi Goldwasser, Joe Kilian - 1999
41 Parallel Algorithms for Integer Factorisation – Richard P. Brent