Temporal Difference Learning Versus CoEvolution for Acquiring Othello Position Evaluation (2006)


Download Links

by Simon M. Lucas
Venue:in IEEE Symposium on Computational Intelligence and Games
Citations:10 - 3 self

Active Bibliography

1 Learning to Play Othello with N-Tuple Systems – Simon M. Lucas
15 Evolutionary Computation and Games – Simon M. Lucas, Graham Kendall - 2006
22 Evolving a Neural Network Location Evaluator to Play Ms. Pac-Man – Simon M. Lucas - 2005
2 Investigating Learning Rates for Evolution and Temporal Difference Learning – Simon M. Lucas
Relationship Between Generalization and Diversity in Coevolutionary Learning – Siang Yew Chong, Peter Tiňo, Xin Yao
Generalization and Diversity in Co-evolutionary Learning – Siang Yew Chong, Peter Tiňo, Xin Yao
Improving Generalization Performance in Co-evolutionary Learning – Siang Yew Chong, Peter Tiňo, Day Chyi Ku, Xin Yao
2 A coevolutionary model for the Virus game – P. I. Cowling, M. H. Naveed, M. A. Hossain - 2006
9 Measuring Generalization Performance in Co-evolutionary Learning – Siang Y. Chong, Peter Tiño, Xin Yao
Driving a Scale Car – Steffen Priesterjahn, Ivan Tanev, Katsunori Shimohara, Steven Armentrout, Re Castellini, Charles Guthrie, Burak Yeten, Tina Yu, Daniele Loiacono
Competitive Coevolution in Ms. Pac-Man – Andrew Borg Cardona, Julian Togelius, Mark J. Nelson
2 Coevolutionary Temporal Difference Learning for Othello – Marcin Szubert, Krzysztof Krawiec
1 Evolving small-board Go players using coevolutionary temporal difference learning with archives – Krzysztof Krawiec, Wojciech Ja ´skowski, Marcin Szubert - 2011
6 Critical factors in the empirical performance of temporal difference and evolutionary methods for reinforcement learning – S. Whiteson , M. E. Taylor, P. Stone - 2009
6 Scalable Neural Networks for Board Games – Tom Schaul, Jürgen Schmidhuber - 2009
The NERO Real-time Video Game – Kenneth O. Stanley, Bobby D. Bryant, Risto Miikkulainen
1 Abalearn: Efficient Self-Play Learning of the game Abalone – Pedro Campos, Thibault Langlois - 2003
4 A Reinforcement Learning Scheme for a Multi-Agent Card Game with Monte Carlo State Estimation – Hajime Fujita, Shin Ishii - 2004
3 Computational intelligence in games – Risto Miikkulainen, Bobby D. Bryant, Ryan Cornelius, Igor V. Karpov, Kenneth O. Stanley, Chern Han Yong - 2006