Hyperparameters: optimize, or integrate out? (1996)

Cached

Download Links

by David J. C. MacKay
Venue:IN MAXIMUM ENTROPY AND BAYESIAN METHODS, SANTA BARBARA
Citations:18 - 4 self

Active Bibliography

67 Comparison of Approximate Methods for Handling Hyperparameters – David J.C. MacKay
13 Bayesian Methods for Neural Networks: Theory and Applications – David J.C. MacKay, Cavendish Laboratory - 1995
1 Divide and Conquer: Pattern Recognition using Mixtures of Experts – Steve Waterhouse, Steve Waterhouse - 1997
Cours IFT6266, Combinaisons, ensembles de mod`eles, et approche Bayesienne – Ensembles On
7 Prior Information and Generalized Questions – Jörg C. Lemm - 1996
Implementation of Gaussian Process models for . . . – Keith Russell Thompson - 2009
Artificial Neural Network Modeling of Forest Tree Growth – Christopher Gordon, Christopher Gordon, Christopher Gordon - 1998
Classification using Bayesian Neural Nets – Jan Bioch Onno, Jan C. Bioch, Onno Van Der Meer, Rob Potharst - 1996
3 Modelling Conditional Probability Densities with Neural Networks – Dirk Husmeier - 1997
39 Bayesian Neural Networks and Density Networks – David J.C. MacKay - 1994
17 Bayesian Regularisation and Pruning using a Laplace Prior – Peter M. Williams - 1994
15 Introduction to Bayesian image analysis – K. M. Hanson - 1993
13 Bayesian Linear Regression – Thomas P. Minka - 1999
1 Searching for `Optimal' Inputs with an Empirical Regression Model – David J.C. MacKay - 1997
Bayesian Approach To Support Vector Machines – Chu Wei - 2003
Maximum Entropy Connections – n.n.
64 Bayesian and Regularization Methods for Hyperparameter Estimation in Image Restoration – Rafael Molina, Aggelos K, Katsaggelos, Aggelos K. Katsaggelos, Javier Mateos - 1999
31 Issues in Bayesian Analysis of Neural Network Models – Peter Müller, David Rios Insua - 1998
42 Moderating the Outputs of Support Vector Machine Classifiers – James Tin-yau Kwok - 1999