27

Implementing the asymptotically fast version of the elliptic curve primality proving algorithm
– F. Morain, Of P. Berrizbeitia, D. Bernstein, P. Mihăilescu, R. Mocenigo

18

Proving primality in essentially quartic random time
– Daniel J. Bernstein
 2003

137

Prime Numbers: A Computational Perspective
– Richard Crandall, Carl Pomerance
 2005

107

On distinguishing prime numbers from composite numbers
– L M Adleman, C Pomerance, R S Rumely
 1983

69

Almost All Primes Can be Quickly Certified
– Shafi Goldwasser, Joe Kilian

8

Efficient quasideterministic primality test improving AKS
– R M Avanzi, P Mihăilescu

192

A probabilistic algorithm for testing primality
– Michael Rabin
 1980

297

Approximate Formulas for Some Functions of Prime Numbers
– J B Rosser, L Schoenfeld
 1962

171

Elliptic curves over finite fields and the computation of square roots mod p
– René Schoof
 1985

918

A Course in Computational Algebraic Number Theory, Graduate Texts
– H Cohen
 1993

8

Cyclotomic primality proving — Recent developments
– P Mihăilescu
 1998

162

Elliptic Curves And Primality Proving
– A. O. L. Atkin, F. Morain
 1993

207

Riemann’s hypothesis and tests for primality
– Gary L Miller
 1976

5

Algebra Engrg
– C Schneider, Appl
 2005

3

On primes in arithmetic progressions. Tsukuba journal of mathematics 25(1
– Hiroshi Mikawa
 2001

14

A ZeroTest and an Interpolation Algorithm for the Shifted Sparse Polynomials
– Dima Grigoriev, Marek Karpinski

156

On Fast Multiplication of Polynomials Over Arbitrary Algebras
– David G. Cantor, Erich Kaltofen
 1991

34

Symbolicnumeric sparse interpolation of multivariate polynomials
– Mark Giesbrecht
 2006

233

Factoring integers with elliptic curves
– H W Lenstra
 1987
