Primality testing with Gaussian periods (2003)

Cached

Download Links

by H. W. Lenstra , Carl Pomerance
Citations:17 - 0 self

Documents Related by Co-Citation

27 Implementing the asymptotically fast version of the elliptic curve primality proving algorithm – F. Morain, Of P. Berrizbeitia, D. Bernstein, P. Mihăilescu, R. Mocenigo
18 Proving primality in essentially quartic random time – Daniel J. Bernstein - 2003
133 Prime numbers: a computational perspective – R Crandall, C Pomerance - 2005
107 On distinguishing prime numbers from composite numbers – L M Adleman, C Pomerance, R S Rumely - 1983
69 Almost All Primes Can be Quickly Certified – Shafi Goldwasser, Joe Kilian
8 Efficient quasi-deterministic primality test improving AKS – R M Avanzi, P Mihăilescu
190 A probabilistic algorithm for testing primality – Michael Rabin - 1980
907 A Course in Computational Algebraic Number Theory, volume 138 of Graduate Texts in Math.Springer-Verlag – H Cohen - 1993
170 Elliptic curves over finite fields and the computation of square roots mod p – R Schoof - 1985
8 Cyclotomic primality proving — Recent developments – P Mihăilescu - 1998
162 Elliptic Curves And Primality Proving – A. O. L. Atkin, F. Morain - 1993
205 Riemann’s hypothesis and tests for primality – G L Miller
233 Factoring Integers with Elliptic Curves – Hendrik W Lenstra - 1987
82 Counting Points on Elliptic Curves Over Finite Fields – René Schoof, Par Ren E Schoof - 1995
296 Approximate formulas for some functions of prime numbers – J Barkley Rosser, Lowell Schoenfeld - 1962
33 The complexity of class polynomial computation via floating point approximations. ArXiv preprint – Andreas Enge - 601
8 Primality proving using elliptic curves: An update – F. Morain - 1998
536 A Classical Introduction to Modern Number Theory – K Ireland, M Rosen - 1990
9 Sharpening PRIMES is in P for a large family of numbers – Pedro Berrizbeitia - 2005