27

Implementing the asymptotically fast version of the elliptic curve primality proving algorithm
– F. Morain, Of P. Berrizbeitia, D. Bernstein, P. Mihăilescu, R. Mocenigo

18

Proving primality in essentially quartic random time
– Daniel J. Bernstein
 2003

133

Prime numbers: a computational perspective
– R Crandall, C Pomerance
 2005

107

On distinguishing prime numbers from composite numbers
– L M Adleman, C Pomerance, R S Rumely
 1983

69

Almost All Primes Can be Quickly Certified
– Shafi Goldwasser, Joe Kilian

8

Efficient quasideterministic primality test improving AKS
– R M Avanzi, P Mihăilescu

190

A probabilistic algorithm for testing primality
– Michael Rabin
 1980

907

A Course in Computational Algebraic Number Theory, volume 138 of Graduate Texts in Math.SpringerVerlag
– H Cohen
 1993

170

Elliptic curves over finite fields and the computation of square roots mod p
– R Schoof
 1985

8

Cyclotomic primality proving — Recent developments
– P Mihăilescu
 1998

162

Elliptic Curves And Primality Proving
– A. O. L. Atkin, F. Morain
 1993

205

Riemann’s hypothesis and tests for primality
– G L Miller

233

Factoring Integers with Elliptic Curves
– Hendrik W Lenstra
 1987

82

Counting Points on Elliptic Curves Over Finite Fields
– René Schoof, Par Ren E Schoof
 1995

296

Approximate formulas for some functions of prime numbers
– J Barkley Rosser, Lowell Schoenfeld
 1962

33

The complexity of class polynomial computation via floating point approximations. ArXiv preprint
– Andreas Enge
 601

8

Primality proving using elliptic curves: An update
– F. Morain
 1998

536

A Classical Introduction to Modern Number Theory
– K Ireland, M Rosen
 1990

9

Sharpening PRIMES is in P for a large family of numbers
– Pedro Berrizbeitia
 2005
