A Substructural Type System for Delimited Continuations

by Oleg Kiselyov , Chung-chieh Shan
Citations:2 - 0 self

Documents Related by Co-Citation

130 Representing Monads – Andrzej Filinski - 1994
66 A Functional Abstraction of Typed Contexts – Olivier Danvy, Andrzej Filinski - 1989
9 A variable-free dynamic semantics – Chung-chieh Shan - 2001
23 Sense and Denotation as Algorithm and Value – Yiannis N. Moschovakis - 1990
19 Polymorphic Delimited Continuations – Kenichi Asai, Yukiyoshi Kameyama - 2007
23 Syntax and semantics of questions. Linguistics and Philosophy – L Karttunen - 1977
15 Continuation semantics for symmetric categorial grammar – R Bernardi, M Moortgat - 2007
8 An approach to call-by-name delimited continuations – H Herbelin, S Ghilezan - 2008
2 Finite Notations for Infinite Terms – Helmut Schwichtenberg - 1998
1 Polymorphic delimited continuations. APLAS 2007. 4 Intuitively, negative types NT are functors SetT → Set (answer typeindexed sets of continuations), and negative values are natural transformations NT → ET . The coercion ↑ T represents the Yoneda embeddin – K Asai, Y Kameyama
1 Abstracting control. LFP – O Danvy, A Filinski - 1990
1 On the logical content of control delimiters. Talk at the PPS/πr 2 seminar Théorie des types et réalisabilité – H Herbelin - 2009
1 Minimalkalkül: Ein reduzieerter intuitionistischer Formalismus – Der - 1937
1 Constructive law of excluded middle. Post to TYPES mailing list – O Kiselyov - 2009
1 Møgelberg and A. Simpson Relational parametricity for computational effects – R E - 2007
1 Reverse engineering machines with the Yoneda lemma – D Piponi
3 Focusing and Polarization in Intuitionistic Logic, in "CSL 2007: Computer Science Logic – C LIANG, D MILLER
7 The Logical Basis of Evaluation Order and Pattern-Matching – Noam Zeilberger, Robert Harper - 2009
6 Call-by-value λ-calculus and LJQ – Roy Dyckhoff, Stéphane Lengrand - 2007