Spam filtering using statistical data compression models (2006)

by Andrej Bratko , Gordon V. Cormack , David R , Bogdan Filipič , Philip Chan , Thomas R. Lynam , Thomas R. Lynam
Venue:Journal of Machine Learning Research
Citations:52 - 12 self

Documents Related by Co-Citation

22 On-line spam filter fusion – T Lynam, G Cormack, D Cheriton - 2006
390 A bayesian approach to filtering junk E-mail, in: Learning for Text Categorization – Mehran Sahami, Susan Dumais, David Heckerman, Eric Horvitz - 1998
240 Support vector machines for spam categorization – Harris Drucker, Donghui Wu, Vladimir N. Vapnik - 1999
79 Data Compression Using Dynamic Markov Modelling – Gordon V. Cormack, R. Nigel Horspool - 1986
22 Online discriminative spam filter training – Joshua Goodman, Wen-tau Yih - 2006
143 Detecting Spam Web Pages through Content Analysis – Alexandros Ntoulas, Mark Manasse
47 Link-Based Characterization and Detection of Web Spam – Luca Becchetti, Carlos Castillo, Debora Donato, Stefano Leonardi, Ricardo Baeza-Yates - 2006
7 A text classification module for Lua – the importance of the training method – F Assis - 2006
18 Online Active Learning Methods for Fast Label-Efficient Spam Filtering – D. Sculley - 2007
330 Data Compression Using Adaptive Coding and Partial String Matching – John G. Cleary, Ian, Ian H. Witten - 1984
37 Spam corpus creation for trec – Gordon Cormack, Thomas Lynam - 2005
41 Spam and the ongoing battle for the inbox – J Goodman, G V Cormack, D Heckerman
42 On Attacking Statistical Spam Filters – Gregory L. Wittel, S. Felix Wu - 2004
23 Relaxed Online SVMs for Spam Filtering – D. Sculley, Gabriel M. Wachman
246 A Toolkit for Statistical Language Modeling, Text Retrieval, Classification and Clustering.,” unpublished manuscript – A K “Bow McCallum - 1996
29 Automatic Vandalism Detection in Wikipedia – Martin Potthast, Benno Stein, Robert Gerling - 2008
12 Batch and on-line spam filter evaluation – G V Cormack, A Bratko - 2006
15 Email Spam Filtering: A Systematic Review – Gordon V. Cormack
25 Text Classification and Segmentation Using Minimum Cross-Entropy – W. J. Teahan - 2000