Rapidly selecting good compiler optimizations using performance counters (2007)

by John Cavazos , Grigori Fursin , Felix Agakov , Edwin Bonilla , Michael F. P , O’boyle Olivier Temam
Venue:In Proceedings of the 5th Annual International Symposium on Code Generation and Optimization (CGO
Citations:46 - 23 self

Documents Related by Co-Citation

93 Using machine learning to focus iterative optimization – F. Agakov, E. Bonilla, J. Cavazos, B. Franke, G. Fursin, M. F. P. O'boyle, J. Thomson, M. Toussaint, C. K. I. Williams - 2006
124 Optimizing for Reduced Code Space Using Genetic Algorithms – Keith D. Cooper, Philip J. Schielke, Devika Subramanian - 1999
108 Compiler optimization-space exploration – Spyridon Triantafyllis, Manish Vachharajani, Neil Vachharajani, David I. August - 2003
38 Fast and effective orchestration of compiler optimizations for automatic performance tuning – Zhelong Pan, Rudolf Eigenmann - 2006
33 Probabilistic source-level optimisation of embedded programs – Björn Franke, John Thomson, Grigori Fursin - 2005
63 A Machine Learning Approach to Automatic Production of Compiler Heuristics – Antoine Monsifrot, Francois Bodin, Rene Quiniou - 2002
92 Meta Optimization: Improving Compiler Heuristics with Machine Learning – Mark Stephenson, Saman Amarasinghe, Martin Martin, Una-May O'Reilly - 2002
371 Automatically tuned linear algebra software – R. Clint Whaley, Jack J. Dongarra - 1998
50 Predicting unroll factors using supervised classification – Mark Stephenson, Saman Amarasinghe - 2005
64 Iterative Compilation in a Non-Linear Optimisation Space – F. Bodin, T. Kisuki, P. M. W. Knijnenburg, M.F.P. O'Boyle , E. Rohou - 1998
28 ABSTRACT COLE: Compiler Optimization Level Exploration – Kenneth Hoste, Lieven Eeckhout
31 Online performance auditing: using hot optimizations without getting burned – Jeremy Lau - 2006
19 Midatasets: Creating the conditions for a more realistic evaluation of iterative optimization – Grigori Fursin, John Cavazos, Olivier Temam - 2007
27 Learning to Predict Performance from Formula Modeling and Training Data – Bryan Singer, Manuela Veloso - 2000
59 Finding effective optimization phase sequences – Prasad Kulkarni, Wankang Zhao, Hwashin Moon, Kyunghwan Cho, David Whalley, Jack Davidson, Mark Bailey, Yunheung Paek, Kyle Gallivan - 2003
37 ACME: Adaptive Compilation Made Efficient – K D Cooper, A Grosul, T J Harvey, S Reeves, D Subramanian, L Torczon, T Waterman - 2005
451 FFTW: An Adaptive Software Architecture For The FFT – Matteo Frigo, Steven G. Johnson - 1998
492 Mibench: A free, commercially representative embedded benchmark suite – M R Guthaus, J S Ringenberg, D Ernst, T M Austin, T Mudge, R B Brown
36 A Practical Method for Quickly Evaluating Program Optimizations – Grigori Fursin, Albert Cohen, Michael O'Boyle, Olivier Temam - 2005