
unknown title
– unknown authors
 2006

10

Polarized category theory, modules and game semantics
– J. R. B. Cockett, R. A. G. Seely
 2004

7

Category theory for linear logicians
– Richard Blute, Philip Scott
 2004


A convenient differential
– Richard Blute, Thomas Ehrhard, Christine Tasson
 2011


Functorial boxes in string diagrams PaulAndré
– Equipe Preuves, Cnrs Université, Paris Denis Diderot
 2006

4

Categories for Computation in Context and Unified Logic: The "Intuitionist" Case
– R. F. Blute, J.R.B. Cockett, R.A.G. Seely
 1997

6

Differential Structure in Models of Multiplicative Biadditive Intuitionistic Linear Logic (Extended Abstract)
– Marcelo P. Fiore


Appl Categor Struct DOI 10.1007/s1048501092410 Deep Inference and Probabilistic Coherence Spaces
– Richard Blute, Prakash Panangaden, Sergey Slavnov, R. Blute (b, P. Panangaden, S. Slavnov
 2009

2

Transport of finiteness structures and applications
– Christine Tasson, et al.
 2010

16

Feedback for Linearly Distributive Categories: Traces and Fixpoints
– R. F. Blute, J.R.B. Cockett, R.A.G. Seely
 1999

8

The Logic of Linear Functors
– Richard Blute, J.R.B. Cockett, R. A. G. Seely
 2002


Kähler Categories
– Richard Blute, J. R. B. Cockett, Timothy Porter, R. A. G. Seely
 2010

4

CARTESIAN DIFFERENTIAL CATEGORIES
– R. F. Blute, J. R. B. Cockett, R. A. G. Seely

3

The Scott model of Linear Logic is the extensional collapse of its relational model
– Thomas Ehrhard
 2011

3

Fock Space: A Model of Linear Exponential Types
– R. F. Blute, Prakash Panangaden, R. A. G. Seely
 1994

4

Coherence of the Double Involution on * Autonomous Categories. Theory and Applications of Category Theory
– J. R. B. Cockett, M. Hasegawa, R. A. G. Seely
 2005

9

! and ?  Storage as tensorial strength
– R. F. Blute, J. R.B. Cockett, R.A.G. Seely
 1996

23

Linearly Distributive Functors
– J.R.B. Cockett, R.A.G. Seely
 1997


What is a differential partial combinatory algebra?
– Jonathan Gallagher
 2011
