The rat as particle filter

Cached

Download Links

by Nathaniel D. Daw , Aaron C. Courville , Université De Montréal
Citations:19 - 2 self

Documents Related by Co-Citation

28 Detecting and predicting changes – Scott D. Brown , Mark Steyvers - 2009
41 A more rational model of categorization – Adam N. Sanborn, Thomas L. Griffiths (tom, Daniel J. Navarro - 2006
890 Sequential Monte Carlo Methods in Practice – A Doucet, N de Freitas, N Gordon - 2001
216 The adaptive nature of human categorization – John R. Anderson - 1991
3773 Reinforcement Learning I: Introduction – Richard S. Sutton, Andrew G. Barto - 1998
1157 Information Theory, Inference, and Learning Algorithms – D MacKay - 2003
17 One and done? Optimal decisions from very few samples – Edward Vul, Thomas L. Griffiths (tom, Noah D. Goodman, Joshua B. Tenenbaum - 2009
3719 Stochastic Relaxation, Gibbs Distributions and the Bayesian Restoration of Images – S Geman, D Geman - 1984
20 Modeling the effects of memory on human online sentence . . . – Roger Levy, Florencia Reali, Thomas L. Griffiths
600 A neural substrate of prediction and reward – P W Dayan, Montague PR - 1997
26 Locally Bayesian Learning with Applications to Retrospective Revaluation and Highlighting – John K. Kruschke - 2006
42 Optimal predictions in everyday cognition – Thomas Griffiths, Thomas L. Griffiths, Joshua B. Tenenbaum - 2006
3023 Prospect theory: An analysis of decisions under risk – Daniel Kahneman, Amos Tversky - 1979
3 Structure learning in action – D A Braun, C Mehring, D M Wolpert - 2010
16 Reinforcement learning in the brain – Yael Niv
657 On Sequential Monte Carlo Sampling Methods for Bayesian Filtering – Arnaud Doucet, Simon Godsill, Christophe Andrieu - 2000
36 Particle filters for mixture models with an unknown number of components – P Fearnhead
11 Decision theory, reinforcement learning, and the brain – P Dayan, N D Daw - 2008
44 A rational analysis of rule-based concept learning – Noah D. Goodman, Joshua B. Tenenbaum, Jacob Feldman, Thomas L. Griffiths - 2007