6

Deciding arithmetic using SAD computers
– M L

7

Twin Paradox and the logical foundation of spacetime. Foundation of Physics
– Judit X. Madarász, István Németi, Gergely Székely

8

Lecture on rotating universes in Kurt Gödel: Collected Works, Volume III: Unpublished Essays and Lectures, edited by Feferman S. et al
– K Gödel
 1995

6

Black Hole Spin in AGN and GBHCs
– Christopher S. Reynolds, Laura W. Brenneman, David Garofalo

8

Firstorder logic foundation of relativity theories
– Judit X. Madarász, István Németi, Gergely Székely
 2006

7

with contributions from Andai
– H Andréka, J Madarász, I Németi

13

A twist in the geometry of rotating black holes: seeking the cause of acausality
– Hajnal Andréka , István Németi, Christian Wüthrich

9

Discovery of a 450 HZ Quasiperiodic Oscillation from the Microquasar GRO J165540 with the Rossi XRay Timing Explorer,” Astrophys
– T E Strohmayer
 2001

22

RELATIVISTIC COMPUTERS AND THE TURING Barrier
– István Németi, Gyula Dávid
 2006

23

crunches, whimpers and shrieks: singularities and acausalities in relativistic spacetimes
– John Earman, Bangs
 1995

31

The Mathematical Universe
– Max Tegmark
 2008

6

On logic, relativity, and the limitations of human knowledge
– I Németi
 1987

9

Turing computability and MalamentHogarth spacetimes
– G Etesi, I Németi

7

The effects of gravitation on clocks, proved in axiomatic relativity. Abstracts for the conference “Logic
– J X Madarász, G Székely

9

Relativistic computers and nonuniform complexity theory
– J Wiedermann, J van Leeuwen
 2002

7

On the traversability of the Cauchy horizon: Herman and Hiscock’s argument revisited
– A Ori
 1997

4

Logical axiomatizations of spacetime. In: NonEuclidean Geometries, János Bolyai Memorial Volume
– H Andréka, J X Madarász, I Németi
 2006

4

Quantum physics and conscious thought, in Quantum Implications: Essays in honour of
– R Penrose
 1987

5

Definability as hypercomputational effect
– S B Cooper
