A Tutorial Introduction to the Minimum Description Length Principle (2005)

by Peter Grünwald
Venue:Advances in Minimum Description Length: Theory and Applications
Citations:58 - 0 self

Documents Related by Co-Citation

1151 Modeling by shortest data description – J Rissanen - 1978
122 Towards parameter-free data mining – Eamonn Keogh, Stefano Lonardi, Chotirat Ann Ratanamahatana - 2004
1909 Pattern classification – R O Duda, P E Hart, D G Stork - 2001
650 UCI repository of machine learning databases – C B D J Newman, S Hettich, C Merz - 1998
305 The minimum description length principle in coding and modeling – Andrew Barron, Jorma Rissanen, Senior Member, Bin Yu, Senior Member - 1998
8569 Elements of Information Theory – T M Cover, J A Thomas - 1991
2 Application of Neural Networks in Foundation Engineering. Theme paper to the International e-Conference on Modern Trends in Foundation Engineering: Geotechnical Challenges and Solutions, Theme No. 5: Numerical Modelling and Analysis – M Shahin, M Jaksa, H Maier - 2004
17 Evolving Artificial Neural Networks Through Evolutionary Programming – Xin Yao, Yong Liu - 1996
8 Mutation-based genetic neural network – P P Palmes, T Hayasaka, S Usui - 2005
807 A Fast and Elitist Multi-Objective Genetic Algorithm: NSGA-II – Kalyanmoy Deb, Amrit Pratap, Sameer Agarwal, T. Meyarivan - 2000
411 Evolving Artificial Neural Networks – Xin Yao - 1999
126 Keeping Neural Networks Simple by Minimizing the Description Length of the Weights – Geoffrey E. Hinton, et al.
64 Fully automatic cross-associations – Deepayan Chakrabarti, Spiros Papadimitriou, Dharmendra S. Modha, Christos Faloutsos - 2004
32 Kolmogorov’s structure functions and model selection – Nikolai Vereshchagin, Paul Vitányi
9 Langdon Jr. Arithmetic coding – J Rissanen, G G - 1979
249 Information-Theoretic Co-Clustering – Inderjit S. Dhillon, Subramanyam Mallela, Dharmendra S. Modha - 2003
562 CURE: An Efficient Clustering Algorithm for Large Data sets – Sudipto Guha, Rajeev Rastogi, Kyuseok Shim - 1998
141 Chameleon: Hierarchical Clustering Using Dynamic Modeling – G Karypis, E H Han, V Kumar - 1999
434 BIRCH: an efficient data clustering method for very large databases – Tian Zhang, Raghu Ramakrishnan, Miron Livny - 1996