Feedforward nets for interpolation and classification (1992)

by Eduardo D. Sontag
Venue:J. Comp. Syst. Sci
Citations:69 - 19 self

Documents Related by Co-Citation

317 What size net gives valid generalization – E B Baum, D Haussler - 1989
91 Bounding the Vapnik-Chervonenkis dimension of concept classes parameterized by real numbers – Paul W. Goldberg, Mark R. Jerrum, Sally Goldman - 1995
372 Decision theoretic generalizations of the PAC model for neural net and other learning applications – D Haussler
630 Learnability and the vapnikchervonenkis dimension – A Blumer, A Ehrenfeucht, D Haussler, M K Warmuth - 1989
62 On the computational power of sigmoid versus boolean threshold circuits – W Maass, G Schnitger, E D Sontag - 1991
60 Bounds for the Computational Power and Learning Complexity of Analog Neural Nets – Wolfgang Maass - 1993
334 Mathematical Control Theory: Deterministic Finite Dimensional Systems – Eduardo D. Sontag - 1990
26 Capacity problems for linear machines – T M Cover - 1968
1696 A Theory of the Learnable – L. G. Valiant - 1984
1773 Introduction to the theory of neural computation – J Hertz, A Krogh, R Palmer - 1991
27 Analog computation, neural networks, and circuits – H T Siegelmann, E D Sontag - 1994
156 On The Computational Power Of Neural Nets – Hava T. Siegelmann, Eduardo D. Sontag - 1995
803 Estimation of Dependencies Based on Empirical Data – V Vapnik - 1982
46 Neural Networks with Quadratic VC Dimension – Pascal Koiran, Eduardo D. Sontag - 1996
830 Approximation by superpositions of a sigmoidal function – G Cybenko
201 Training a 3-node neural network is NP-Complete – Avrim L. Blum, Ronald L. Rivest - 1988
18 Perspectives of Current Research about the Complexity of Learning on Neural Nets – W. Maass - 1994
44 Finiteness Results for Sigmoidal "Neural" Networks – Angus Macintyre, Eduardo D. Sontag - 1993
51 Uniqueness of the Weights for Minimal Feedforward Nets with a Given Input-Output Map – H├ęctor Sussmann - 1992