On Discriminative Bayesian Network Classifiers and Logistic Regression (2005)

by Teemu Roos , Hannes Wettig , Peter Grünwald , Petri Myllymäki , Henry Tirri , Pedro Larrañaga , Jose A. Lozano , Jose M. Peña , Iñaki Inza
Venue:Machine Learning
Citations:15 - 1 self

Active Bibliography

564 Dynamic Bayesian Networks: Representation, Inference and Learning – Kevin Patrick Murphy - 2002
36 Learning Probabilistic Networks – Paul J Krause - 1998
11 Classification using Hierarchical Naïve Bayes models – Helge Langseth, Thomas D. Nielsen - 2002
Journal of Machine Learning Research (2008) Submitted; Published Semi-naive Bayesian Classification – Fei Zheng, Geoffrey I. Webb
Efficient Heuristics for Discriminative Structure Learning of Bayesian Network Classifiers – Franz Pernkopf, Jeff A. Bilmes, Russ Greiner
9 Latent classification models – Helge Langseth, Thomas D. Nielsen, Pedro Larrañaga, Jose A. Lozano, Jose M. Peña, Iñaki Inza - 2005
58 Structural extension to logistic regression: Discriminative parameter learning of belief net classifiers – Russell Greiner, Xiaoyuan Su, Bin Shen, Wei Zhou - 2002
Recognition The Graphical Models Team – Jhu Summer Workshop, Jeff A. Bilmes, Geoff Zweig Ibm, Karen Livescu Mit, Peng Xu, Kirk Jackson Dod, Yigal Br, Man Phonetact Inc, Eric S, Ness Speechworks, Eva Holtz, Bill Byrne, Jhu Summer Workshop, Geoff Zweig Ibm, Peng Xu, Kirk Jackson Dod, Yigal Br, Man Phonetact Inc, Eric S, Ness Speechworks, Eva Holtz, Bill Byrne Johns - 2001
24 Irrelevance and parameter learning in Bayesian networks – Jiang Su, Harry Zhang, Charles X. Ling, Stan Matwin - 1996
8 Boosted Bayesian Network Classifiers – Yushi Jing, Vladimir Pavlović, James M. Rehg
114 Machine-Learning Research -- Four Current Directions – Thomas G. Dietterich
Just Enough Die-Level Test: Optimizing IC Test via Machine Learning and Decision Theory – Tony Fountain - 1998
178 Efficient approximations for the marginal likelihood of Bayesian networks with hidden variables – David Maxwell Chickering, David Heckerman - 1997
9 Comparison of Machine Learning and Traditional Classifiers in Glaucoma Diagnosis – Kwokleung Chan, Te-won Lee, Pamela A. Sample, Michael H. Goldbaum, Robert N. Weinreb, Terrence J. Sejnowski - 2002
18 On supervised selection of Bayesian networks – Petri Kontkanen, Petri Myllymaki, Tomi Silander, Henry Tirri - 1999
53 A Weakness in the 4.2BSD Unix TCP/IP Software – Robert T. Morris - 1985
34 Discriminative, Generative and Imitative Learning – Tony Jebara - 2002
Decision Trellis Models for Tuple Categorization in Databases – Paolo Frasconi, Marco Gori, Giovanni Soda