20

On the distribution of pseudoprimes
– C Pomerance
 1981

8

jr, The pseudoprimes up to 25.10
– C Pomerance, J L Selfridge, S S Wagstaff
 1980

71

There are infinitely many Carmichael numbers
– W. R. Alford, Andrew Granville, Carl Pomerance
 1982

10

Nagaraj, Density of Carmichael numbers with three prime factors
– R. Balasubramanian, S. V. Nagaraj

6

On composite numbers n for which a n−1 ≡ 1 mod n for every a prime to n, Scripta Mathematica 16
– N G W H Beeger
 1950

4

composite numbers P which satisfy the Fermat congruence aP −1
– On
 1912

190

Probabilistic algorithm for testing primality
– M O Rabin
 1980

5

Review 13[9] — table of Carmichael numbers to 10 9
– J D Swift
 1975

3

On Fermat dpseudoprimes
– Lawrence Somer

6

On Carmichael numbers, Simon Stevin 29
– H J A Duparc
 1952

70

Prime Numbers and Computer Methods for Factorization
– H Riesel
 1985

4

The Number of Distinct Prime Factors for Which oe(N
– M Kishore
 1977

4

Do There Exist Composite Numbers M for Which k$(M
– E Lieuwens

36

Unsolved Problems in Number Theory, Second edition
– R K Guy
 1994

3

Carmichael Numbers of the form (6m + 1)(12m + 1)(18m + 1)
– Harvey Dubner
 2002

2

Table of Carmichael numbers to 10 9
– J D Swift
 1975

6

Problème chinois. L’intermédiaire des mathématiciens
– A Korselt

11

On Fermat T s Simple Theorem
– J Chernick

17

Note on a new number theory function
– R D Carmichael
 1909
