A Shortest 2-Basis for Boolean Algebra in Terms of the Sheffer Stroke (2003)

Cached

Download Links

by Robert Veroff
Venue:J. Automated Reasoning
Citations:9 - 6 self

Active Bibliography

21 Short Single Axioms for Boolean Algebra – William Mccune, Robert Veroff, Branden Fitelson, Kenneth Harris, Andrew Feist, Larry Wos - 2002
Logical Basis for the Automation of Reasoning: Case Studies 1 – Larry Wos, Robert Veroff, Gail W. Pieper
Logical Basis for the Automation of Reasoning: Case Studies – Larry Wos, Robert Veroff, Gail W. Pieper
DISCLAIMER – Olga Shumsky Matlin, William Mccune, Ewing Lusk - 2003
3 Short equational bases for ortholattices – W. Mccune, R. Padmanabhan, M. A. Rose, R. Veroff - 2004
2.1.1 Lattice Theory........................................ 2 – W. Mccune, R. Padmanabhan, M. A. Rose, R. Veroff - 2004
ANL/MCS-TM-265 Short Equational Bases for Ortholattices: Proofs and Countermodels – W. Mccune, R. Padmanabhan, M. A. Rose, R. Veroff - 2003
2 A Short Sheffer Axiom for Boolean Algebra – Robert Veroff, William McCune - 2000
ANL/MCS-TM-244 A Short Sheffer Axiom for Boolean Algebra – Robert Veroff, William Mccune - 2000