The Hahn-Banach Theorem in Type Theory (1997)

by Jan Cederquist , Thierry Coquand , Sara Negri
Citations:7 - 0 self

Active Bibliography

7 A Pointfree approach to Constructive Analysis in Type Theory – Jan Cederquist - 1997
9 A Constructive Proof of the Heine-Borel Covering Theorem for Formal Reals – Jan Cederquist, Sara Negri - 1996
1 A Machine Assisted Proof of the Hahn-Banach Theorem – Jan Cederquist - 1997
9 Continuity on the real line and in formal spaces – Erik Palmgren - 2005
21 Type Theory and Programming – Thierry Coquand , Bengt Nordström, Jan M. Smith, Björn von Sydow - 1994
Constructive logic and type theory ∗ – Erik Palmgren - 2004
1 Convergence in formal topology: a unifying notion – Francesco Ciraulo, Maria Emilia Maietti, Giovanni Sambin - 2013
Locales and Formal Spaces – Aarno Hohti - 2002
LOCATEDNESS AND OVERT SUBLOCALES – unknown authors - 2009
31 Inductively Generated Formal Topologies – Thierry Coquand, Giovanni Sambin, Jan Smith, Silvio Valentini
3 A constructive topological proof of van der Waerden's theorem – Thierry Coquand - 1993
6 Forcing in Proof Theory – Jeremy Avigad - 2004
99 Martin-Löf’s Type Theory – B. Nordström, K. Petersson, J. M. Smith - 2000
9 The structure of nuprl’s type theory – Robert L. Constable - 1997
Introduction About Stone’s notion of Spectrum – Thierry Coquand
22 About Stone's notion of Spectrum – Thierry Coquand - 2000
Coequalisers in formal topology – Erik Palmgren, Erik Palmgren - 2005
2 Formal Topologies on the Set of First-Order Formulae – Thierry Coquand, Sara Sadocco, Giovanni Sambin, Jan M. Smith - 1998
2 Quotient spaces and coequalisers in formal topology – Erik Palmgren