The Derivation of a Tighter Bound for Top-Down Skew Heaps (1991)

Cached

Download Links

by Anne Kaldewaij , Berry Schoenmakers
Citations:4 - 3 self

Documents Related by Co-Citation

11 Data Structures and Amortized Complexity in a Functional Setting – Berry Schoenmakers - 1992
373 Self-adjusting binary search trees – D D Sleator, R E Tarjan - 1985
46 Self adjusting heaps – D D Sleator, R E Tarjan - 1986
3 Sedgewick R., Sleator D.D., Tarjan R.E. The pairing heap: a new form of self-adjusting heap. Algorithmica 1 – M L Fredman - 1986
3 Sleator D.D., Tarjan R.E. A tight amortized bound for path reversal – D Ginat - 1989
13 The Role of Lazy Evaluation in Amortized Data Structures – Chris Okasaki - 1996
6 Amortization, Lazy Evaluation, and Persistence: Lists with Catenation via Lazy Linking – Chris Okasaki - 1995
86 A data structure for manipulating priority queues – J Vuillemin - 1978
138 Amortized computational complexity – R E Tarjan - 1985
40 Concurrent Operations on Priority Queues – D W Jones - 1989
109 Leeuwen. Worst-case analysis of set union algorithms – R E Tarjan, J van
4 Efficiency of equivalence algorithms – M J Fischer - 1972
254 Efficiency of a good but not linear set union algorithm – R E Tarjan
699 The Art of Computer Programming, volume 3: Sorting and Searching – D E Knuth - 1973
636 The Encyclopedia of Integer Sequences – N. J. A. Sloane
66 An Eternal Golden Braid. Basic Books – D R Gödel Hofstadter, Bach Escher - 1999
1 Fibonacci heaps and improved network optimization algorithms – M L Fredman, R E Tarjan - 1987
1 Deques with heap order. Information Processing Letters 22 – H Gajewska, R E Tarjan - 1986
3 On saving space in parallel computation – T Hagerup - 1988