Universality Of The Local Eigenvalue Statistics For A Class Of Unitary Invariant Random Matrix Ensembles (1997)

by L. Pastur , M. Shcherbina
Citations:55 - 4 self

Active Bibliography

3 A problem of Totik on fast decreasing polynomials – A. B. J. Kuijlaars, W. Van Assche - 1998
36 Generic Behavior of the Density of States in Random Matrix Theory and Equilibrium Problems in the Presence of Real Analytic External Fields – A. B. J. Kuijlaars, K. T-R McLaughlin - 2000
14 Bulk Universality and Related Properties of Hermitian Matrix Models – L. Pastur, et al. - 2007
Negative moments – Yan V Fyodorov - 2002
unknown title – Yan V Fyodorov - 2001
unknown title – Yan V Fyodorov - 2001
18 Universality in random matrix theory for orthogonal and symplectic ensembles – Percy Deift, Dimitri Gioev - 2004
30 Universality at the edge of the spectrum for unitary, orthogonal and symplectic ensembles of random matrices – Percy Deift, Dimitri Gioev
3 Superbosonization of invariant random matrix ensembles – P. Littelmann, H. -j. Sommers, M. R. Zirnbauer
The Niels Bohr Institute, – Romuald A. Janik - 2008
3 Orthogonal Polynomials: from Jacobi to Simon ∗ Contents – Leonid Golinskii, Vilmos Totik - 2005
4 The Support Of The Equilibrium Measure In The Presence Of A Monomial External Field On ... – S. B. Damelin, A. B. J. Kuijlaars - 1999
7 A survey of weighted polynomial approximation with exponential weights – D. S. Lubinsky - 2007
10 Extrapolation algorithms and Padé approximations: a historical survey – C. Brezinski - 1994
8 Entropy Of Orthogonal Polynomials With Freud Weights And Information Entropies Of The Harmonic Oscillator Potential – W. Van Assche, R. J. Yanez, J.S. DEHESA - 1998
59 General Orthogonal Polynomials – Vilmos Totik - 1992
39 Double scaling limit in the random matrix model: the Riemann-Hilbert approach – Pavel Bleher, Bertrand Eynard
1 Long time behavior of the continuum limit of the Toda lattice, and the generation of infinitely many gaps from initial data – Initial Data, A. B. J. Kuijlaars, K. T-R McLaughlin - 2000
2 Polynomial approximation with varying weights on compactsetsofthecomplex plane – Igor E. Pritsker, Communicated Theodore W. Gamelin