Annealed Theories of Learning (1995)

by H. S. Seung
Venue:In J.-H
Citations:9 - 1 self

Documents Related by Co-Citation

144 A mean field theory learning algorithm for neural networks – C Peterson, J R Anderson - 1987
7069 Probabilistic Reasoning in Intelligent Systems – J Pearl - 1988
225 The Wake-Sleep Algorithm for Unsupervised Neural Networks – Geoffrey Hinton, Peter Dayan, Brendan J Frey, Radford M Neal - 1995
194 The Helmholtz Machine – Peter Dayan, Geoffrey E. Hinton, Radford M. Neal, Richard S. Zemel - 1995
181 Connectionist learning of belief networks – R M Neal - 1992
8058 Maximum likelihood from incomplete data via the EM algorithm – A. P. Dempster, N. M. Laird, D. B. Rubin - 1977
17 The limitations of deterministic Boltzmann machine learning – C C Galland - 1993
238 Statistical Field Theory – G Parisi - 1988
3721 Stochastic relaxation, Gibbs distribution, and the Bayesian restoration of images – S Geman, D Geman - 1984
116 Mean Field Theory for Sigmoid Belief Networks – Lawrence K. Saul, Tommi Jaakkola, Michael I. Jordan - 1996
11 A Mean Field Learning Algorithm For Unsupervised Neural Networks – Lawrence Saul, Michael Jordan - 1999
588 The computational complexity of probabilistic inference using Bayesian belief networks – G F Cooper - 1990
42 Computing Upper and Lower Bounds on Likelihoods in Intractable Networks – Tommi S. Jaakkola, Michael Jordan, Michael I - 1996
6 Does the wake-sleep algorithm learn good density estimators – Brendan J Frey, Geoffrey E Hinton, Peter Dayan - 1996
8569 Elements of Information Theory – T M Cover, J A Thomas - 1991
99 Exploiting Tractable Substructures in Intractable Networks – Lawrence Saul, Michael I. Jordan - 1995
1124 Graphical Models – S L Lauritzen - 1996
766 A View Of The Em Algorithm That Justifies Incremental, Sparse, And Other Variants – Radford Neal, Geoffrey E. Hinton - 1998
567 Probabilistic Inference Using Markov Chain Monte Carlo Methods – Radford M. Neal - 1993