40

New finite pivoting rules for the simplex method
– Robert G. Bland, Robert G. Bland
 1977

17

A Convergent CrissCross Method
– T Terlaky
 1985

7

Coloring and Duality: Combinatorial Augmentation Methods
– David L Jensen
 1985

798

Linear Programming and Extensions
– G B Dantzig
 1963

21

Oriented matroid programming
– K Fukuda
 1982

17

A finite crisscross method for oriented matroids
– T Terlaky
 1987

15

Linear and Quadratic Programming in Oriented Matroids
– M Todd
 1985

14

A conformal elimination free algorithm for oriented matroid programming
– Z Wang
 1987

8

Least index resolution of degeneracy in linear complementarity problems
– Y Y Chang
 1979

18

A combinatorial abstraction of linear programming
– R G Bland
 1977

6

On anticycling pivoting rules for the simplex method
– S Zhang
 1991

8

An exponential example for Terlaky’s pivoting rule for the crisscross simplex method, Mathematical Programming 46
– C Roos
 1990

115

A polynomial algorithm for linear programming, Doklady Akad. Nauk SSSR 244
– L G Khachian
 1979

51

The simplex method: a probabilistic analysis. Number 1 in Algorithms and Combinatorics
– K H Borgwardt
 1980

30

A simplex algorithm whose average number of steps is bounded between two quadratic functions of the smaller dimension
– Ilan Adler, Nimrod Megiddo
 1985

170

How good is the simplex algorithm
– V Klee, G Minty
 1969

10

The existence of a short sequence of admissible pivots to an optimal basis
– K Fukuda, HJ Lüthi, M Namiki
 1997

9

Some Generalizations of the CrissCross Method for the Linear Complementarity Problem of Oriented Matroids
– E Klafszky, T Terlaky
 1989

12

Linear Complementarity and Oriented Matroids
– Komei Fukuda, Tamas Terlaky
 1990
