Improving the Accuracy and Speed of Support Vector Machines (1997)

Cached

Download Links

by Chris J.C. Burges , Bernhard Schölkopf
Venue:Advances in Neural Information Processing Systems 9
Citations:144 - 21 self

Documents Related by Co-Citation

9023 The Nature of Statistical Learning Theory – Vladimir N. Vapnik - 1995
146 Simplified Support Vector Decision Rules – Chris J.C. Burges - 1996
1304 A training algorithm for optimal margin classifiers – Bernhard E. Boser, et al. - 1992
2188 Support-Vector Networks – Corinna Cortes, Vladimir Vapnik - 1995
193 Support Vector Method for Function Approximation, Regression Estimation, and Signal Processing – Vladimir Vapnik, Steven E. Golowich, Alex Smola - 1996
132 Support Vector Learning – Bernhard Schölkopf - 1997
1060 Nonlinear component analysis as a kernel eigenvalue problem – Bernhard Schölkopf, Alexander Smola, Klaus-Robert Müller - 1996
285 Theoretical foundations of the potential function method in pattern recognition learning. Automation and Remote Control – M A Aizerman, E M Braverman, L I Rozoner - 1964
186 Extracting Support Data for a Given Task – Bernhard Schölkopf, Chris Burges, Vladimir Vapnik - 1995
56 Reducing the run-time complexity of Support Vector Machines – Edgar Osuna, Federico Girosi - 1998
148 The Connection between Regularization Operators and Support Vector Kernels – Alex J. Smola, Bernhard Schölkopf, Klaus-Robert Müller - 1998
308 Backpropogation applied to handwritten zip code recognition – Y Le Cun, B Boser, J S Denker, D Henderson, R E Howard, W Hubbard, L D Jackel - 1989
70 Incorporating Invariances in Support Vector Learning Machines – Bernhard Schölkopf, Chris Burges, Vladimir Vapnik - 1996
254 An Improved Training Algorithm for Support Vector Machines – Edgar Osuna, Robert Freund, Federico Girosi - 1997
4856 Neural Networks for Pattern Recognition – Christopher M Bishop - 1995
98 Prior Knowledge in Support Vector Kernels – Bernhard Schölkopf, Patrice Simard, Alex Smola, Vladimir Vapnik - 1998
205 An equivalence between sparse approximation and Support Vector Machines – Federico Girosi - 1997
178 Sparse Greedy Matrix Approximation for Machine Learning – Alex J. Smola, Bernhard Schölkopf - 2000
2295 A tutorial on support vector machines for pattern recognition – Christopher J. C. Burges - 1998