A Theory of Program Size Formally Identical to Information Theory (1975)

by Gregory J. Chaitin
Citations:329 - 16 self

Documents Related by Co-Citation

334 The Definition of Random Sequences – Per Martin-Löf - 1966
1689 An introduction to Kolmogorov Complexity and its Applications: Preface to the First Edition – Ming Li, Paul Vitanyi - 1997
532 Three approaches to the quantitative definition of information – A N Kolmogorov - 1965
150 Zufälligkeit und Wahrscheinlichkeit. Eine algorithmische Begründung der Wahrscheinlichkeitstheorie – Claus-Peter Schnorr - 1971
405 A formal theory of inductive inference – R J Solomonoff - 1964
87 The process complexity and effective random tests – C P Schnorr - 1973
189 The complexity of finite objects and the development of the concepts of information and randomness by means of the theory of algorithms – A. K. Zvonkin, L. A. Levin - 1970
108 The concept of a random sequence – L A Levin - 1973
89 On the symmetry of algorithmic information – P Gács - 1974
33 A formal theory of inductive inference – Solomono - 1964
96 Laws of information conservation (non-growth) and aspects of the foundation of probability theory – L Levin - 1974
226 On the Length of Programs for Computing Finite Binary Sequences – Gregory J. Chaitin - 1966
44 A variant of the kolmogorov concept of complexity – Donald W Loveland - 1969
475 Recursively Enumerable Sets and Degrees – R Soare - 1987
1151 Modeling by shortest data description – J Rissanen - 1978
1161 On computable numbers with an application to the Entscheidungsproblem – A Turing - 1936
92 Logical basis for information theory and probability theory – A N Kolmogorov
89 A unified approach to the definition of a random sequence – C P Schnorr - 1971
25 Various measures of complexity for finite objects (axiomatic description – L A Levin - 1976