1

The extended ktree algorithm, SODA ’09
– Lorenz Minder, Alistair Sinclair

2

HowgraveGraham and Antoine Joux. New generic algorithms for hard knapsacks
– Nick

3

The RabinMonier theorem for Lucas pseudoprimes
– F. Arnault
 1997

7

The probability that a random probable prime is composite
– Su Hee Kim, Carl Pomerance
 1989

5

On the number of elliptic pseudoprimes
– Dan M Gordon
 1989

2

Improved Bounds for the Rabin Primality Test
– I Damgard

2

Dickson pseudoprimes and primality testing
– W B Müller, A Oswald

2

Pseudoprimes on elliptic curves
– Daniel M Gordon

1

3rd IMA conference on cryptography and coding
– Proceedings
 1991

1

sequences modulo prime powers
– Recurrent
 1991

1

Seberry and Yuliang Zheng (eds
– Jennifer
 1993

1

A fast MonteCarlo test for primality
– Erratum
 1978

4

Efficient computation of full Lucas sequences
– M. Joye, J.J. Quisquater
 1996

3

Müller: A note on strong Fibonacci pseudoprimes
– R Lidl, W B
 1990

11

A Probable Prime Test With High Confidence
– Jon Grantham

18

The Carmichael Numbers up to 10^15
– R.G.E. Pinch
 1992

8

Some Remarks on Strong Fibonacci Pseudoprimes." Applicable Algebra in Eng
– R Lidl, W B Muller, A Oswald

3

On Numbers Analogous to the Carmichael Numbers.” Canad
– H C Williams
 1977

9

The distribution of Lucas and elliptic pseudoprimes
– Daniel M. Gordon, et al.
 2001
