The number of Reidemeister Moves Needed for Unknotting (1998)

by Joel Hass , Jeffrey C. Lagarias
Citations:35 - 11 self

Documents Related by Co-Citation

55 The computational Complexity of Knot and Link Problems – Joel Hass, Jeffrey C. Lagarias - 1999
48 Algorithms for the complete decomposition of a closed 3-manifold – William Jaco, Jeffrey L Tollefson - 1995
60 Geschlossene Flächen in dreidimensionalen Mannigfaltigkeiten. Jahresbericht der Deutschen Mathematikver-Vereinigung – H Kneser - 1930
23 The classification of knots and 3-dimensional spaces – Geoffrey Hemion - 1992
30 Theorie der Normalflächen: Ein Isotopickriterium für der Kreisknoten – Wolfgang Haken - 1961
14 The computational complexity of knot and link problems, preprint – Joel Hass, Jeffrey C Lagarias, Nicholas Pippenger - 1998
45 An algorithm to decide if a 3-manifold is a Haken manifold – William Jaco, Ulrich Oertel - 1984
51 Theorie der Normalflächen – W Haken - 1961
9 A trivial knot whose spanning disks have exponential size – J Snoeyink - 1990
65 The Knot Book: An Elementary Introduction to the Mathematical Theory of Knots – Colin C Adams
46 The first 1,701,936 knots – Jim Hoste, Morwen Thistlethwaite, Jeff Weeks - 1998
43 das Geschlecht von – H Seifert, Uber - 1934
18 Bestimmung der Primfaktorzerlegung von Verkettungen – H Schubert - 1961
37 Affine structures in 3-manifolds v. the triangulation theorem and hauptvermutung – E E Moise - 1952
10988 Computers and Intractability: A Guide to the Theory of NP-completeness – M Garey, D Johnson - 1979
14 On the Reidemeister moves of a classical knot – Bruce Trace - 1983
5 Kink-free deformations of polygons – G VEGTER - 1989
20 Classifying immersed curves – J S CARTER - 1991
4 Unknot diagrams requiring a quadratic number of Reidemeister moves to untangle – Joel Hass, Tahl Nowik - 2007