Characterizations of the Basic Feasible Functionals of Finite Type (Extended Abstract) (1990)

Cached

Download Links

by Stephen A. Cook , Bruce M. Kapron
Venue:Feasible Mathematics: A Mathematical Sciences Institute Workshop
Citations:27 - 6 self

Documents Related by Co-Citation

88 Functional interpretations of feasibly constructive arithmetic – Stephen Cook, Alasdair Urquhart - 1993
151 The intrinsic computational difficulty of functions – A Cobham - 1965
179 A New Recursion-Theoretic Characterization Of The Polytime Functions – Stephen Bellantoni, Stephen Cook - 1992
29 Polynomial and abstract subrecursive classes – K Mehlhorn - 1974
36 A New Characterization Of Type 2 Feasibility – Kapron Cook, S. A. Cook - 1996
17 Complexity theory of higher type functionals – A Seth - 1994
31 Computational complexity of higher type functions – S Cook - 1991
121 Bounded Arithmetic, Bibliopolis – S R Buss - 1986
9 There is no recursive axiomatization for feasible functionals of type 2 – A Seth - 1992
23 Polynomial Time Computable Arithmetic and Conservative Extensions – Fernando Ferreira - 1988
10 Feasible computation in higher types – B Kapron - 1991
72 Foundations of Constructive Mathematics: Metamathematical Studies – Michael J Beeson - 1985
57 Predicative recurrence and computational complexity I: word recurrence and poly-time – D Leivant - 1994
14 On characterizations of the basic feasible functional – R Irwin, B Kapron, J Royer
30 A foundational delineation of poly-time – Daniel Leivant - 1994
145 Über eine bisher noch nicht benützte Erweiterung des finiten Standpunktes – Kurt Gödel - 1958
14 Type two computational complexity – Robert Constable - 1973
66 Constructive theories of functions and classes – Solomon Feferman - 1979
48 Systems of explicit mathematics with non-constructive µ-operator. Part I – Solomon Feferman, Gerhard Jäger - 1993