Data Filtering and Distribution Modeling Algorithms for Machine Learning (1993)

Cached

Download Links

by Yoav Freund , Manfred K. Warmuth , David Haussler , David P. Helmbold
Citations:18 - 4 self

Documents Related by Co-Citation

667 The strength of weak learnability – Robert E. Schapire - 1990
419 Boosting a Weak Learning Algorithm By Majority – Yoav Freund - 1995
2307 A Decision-Theoretic Generalization of on-Line Learning and an Application to Boosting – Yoav Freund, Robert E. Schapire - 1997
599 U.V.: An introduction to computational learning theory – M J Kearns, Vazirani - 1994
1696 A Theory of the Learnable – L. G. Valiant - 1984
83 Harmonic Analysis of polynomial threshold functions – Jehoshua Bruck - 1990
78 Boosting performance in neural networks – Harris Drucker, Robert Schapire, Patrice Simard - 1993
678 The Weighted Majority Algorithm – Nick Littlestone, Manfred K. Warmuth - 1994
1625 Experiments with a New Boosting Algorithm – Yoav Freund, Robert E. Schapire - 1996
4905 C4.5: Programs for Machine Learning – J R Quinlan - 1993
803 Estimation of Dependencies Based on Empirical Data – V Vapnik - 1982
91 Boosting decision trees – H Drucker, C Cortes - 1996
21 Learning Sparse Perceptrons – Jeffrey C. Jackson, Mark W. Craven - 1996
15 Approximate methods for sequential decision making using expert advice – T H CHUNG - 1994
317 How to Use Expert Advice – Nicolò Cesa-Bianchi, Yoav Freund, David Haussler, David P. Helmbold, Robert E. Schapire, Manfred K. Warmuth - 1997
251 Aggregating strategies – V Vovk - 1990
53 Tight Worst-Case Loss Bounds for Predicting With Expert Advice – David Haussler, Jyrki Kivinen, Manfred K. Warmuth - 1994
118 Weakly Learning DNF and Characterizing Statistical Query Learning Using Fourier Analysis – Avrim Blum, Merrick Furst, Jeffrey Jackson, Michael Kearns, Yishay Mansour, Steven Rudich - 1994
133 Game Theory, On-line Prediction and Boosting – Yoav Freund, Robert E. Schapire - 1996