The Barendregt Cube with Definitions and Generalised Reduction (1997)

Cached

Download Links

by Roel Bloo , Fairouz Kamareddine , Rob Nederpelt
Citations:37 - 17 self

Documents Related by Co-Citation

1125 The Lambda Calculus: Its Syntax and Semantics – H P Barendregt - 1981
98 λυ, a calculus of explicit substitutions which preserves strong normalisation – Z Benaissa, D Briaud, P Lescanne, J Rouyer-Degli - 1996
78 A direct algorithm for type inference in the rank-2 fragment of the second-order λ-calculus – A. J. Kfoury, J. B. Wells - 1993
520 Lambda Calculi with Types – Henk Barendregt, S. Abramsky, D. M. Gabbay, T. S. E. Maibaum, H. P. Barendregt - 1992
32 The Conservation Theorem revisited – Philippe de Groote - 1993
186 Parameter-Passing and the Lambda Calculus – Erik Crank, Matthias Felleisen - 1991
41 On Stepwise Explicit Substitution – Fairouz Kamareddine, Rob Nederpelt - 1993
52 Lambda-calcul et réseaux – Laurent Regnier - 1992
78 A lambda-calculus à la de Bruijn with explicit substitutions – Fairouz Kamareddine, Alejandro Ríos - 1995
21 Re reduction in the -calculus – F Kamareddine, R P Nederpelt - 1995
54 Strong normalization in a typed lambda calculus with lambda structured types – R P Nederpelt - 1994
120 Confluence properties of Weak and Strong Calculi of Explicit Substitutions – Pierre-Louis Curien , Therese Hardin, Jean-Jacques Levy - 1996
61 Lambda Calculi With Types, Handbook of Logic – H P Barendregt - 1992
92 The mathematical language AUTOMATH, its usage, and some of its extensions – N G de Bruijn - 1970
14 A unified approach to Type Theory through a refined λ-calculus – Fairouz Kamareddine, Rob Nederpelt - 1994
18 New Notions of Reduction and Non-Semantic Proofs of β-Strong Normalization in Typed λ-Calculi – A. J. Kfoury, J. B. Wells - 1994
14 Calculi of Generalised β-Reduction and Explicit Substitutions: The Type-Free and Simply Typed Versions – Fairouz Kamareddine , Alejandro Ríos, J. B. Wells - 1998
45 Typed -calculi with explicit substitutions may not terminate – P-A Melli`es - 1995
854 A formulation of the simple theory of types – Alonzo Church - 1940