Bayesian Neural Networks and Density Networks (1994)

by David J.C. MacKay
Venue:Nuclear Instruments and Methods in Physics Research, A
Citations:39 - 8 self

Documents Related by Co-Citation

3226 Self‐organizing maps – T Kohonen - 1995
8058 Maximum likelihood from incomplete data via the EM algorithm – A. P. Dempster, N. M. Laird, D. B. Rubin - 1977
476 Probabilistic Principal Component Analysis – Michael E. Tipping, Chris M. Bishop - 1999
129 An introduction to latent variable models – B Everitt - 1984
18 Analysis of multiphase flow using dual-energy gamma densitometry and neural networks – C M Bishop, G D James - 1993
223 Latent Variable Models and Factor Analysis – D J Bartholomew - 1987
225 The Wake-Sleep Algorithm for Unsupervised Neural Networks – Geoffrey Hinton, Peter Dayan, Brendan J Frey, Radford M Neal - 1995
86 A Hierarchical Latent Variable Model for Data Visualization – Christopher Bishop, Tipping, Cambridge Cb Nh - 1997
4786 Neural Networks for Pattern Recognition – C M Bishop - 1995
17 EM Optimization of Latent-Variable Density Models – Christopher M. Bishop, Markus Svensén, Christopher K.I. Williams - 1996
384 A non-linear mapping for data structure analysis – J W Sammon - 1969
290 Principal Curves – T Hastie, W Stuetzle - 1988
398 A Practical Bayesian Framework for Backprop Networks – David J.C. MacKay - 1991
134 Probabilistic non-linear principal component analysis with Gaussian process latent variable models – Neil Lawrence, Aapo Hyvärinen - 2005
194 The Helmholtz Machine – Peter Dayan, Geoffrey E. Hinton, Radford M. Neal, Richard S. Zemel - 1995
525 Hidden Markov models in computational biology: applications to protein modeling – Anders Krogh, Michael Brown, I. Saira Mian, Kimmen Sjölander, David Haussler - 1994
1087 Self-organized formation of topologically correct feature maps. Biological Cybernetics 43:59–69 – T Kohonen - 1982
16 Magnification Factors for the GTM Algorithm – Christopher M. Bishop - 1997
7069 Probabilistic Reasoning in Intelligent Systems – J Pearl - 1988