Primality Testing Revisited (1992)

Cached

Download Links

by J.H. Davenport
Citations:5 - 0 self

Documents Related by Co-Citation

83 Every prime has a succinct certificate – V R Pratt - 1975
207 Riemann’s hypothesis and tests for primality – G L Miller - 1976
33 How to generate factored random numbers – Eric Bach - 1988
10 Comments on search procedures for primitive roots – Eric Bach - 1997
18 Period of the power generator and small values of Carmichael’s function – John B. Friedlander, Carl Pomerance, Igor, E. Shparlinski
24 Carmichael’s lambda function – Paul Erdös, Carl Pomerance, Eric Schmutz - 1991
7 zur Gathen and Igor Shparlinski. Orders of Gauss periods in finite fields – Joachim von - 1998
11 A course in number theory and cryptography, volume 114 of Graduate texts in mathematics – Neal Koblitz - 1987
5 Smooth Orders and Cryptographic Applications – Carl Pomerance, Igor Shparlinski - 2002
2 CORRIGENDUM TO “PERIOD OF THE POWER GENERATOR AND SMALL VALUES OF CARMICHAEL’S FUNCTION” – John B. Friedlander, Carl Pomerance, Igor, E. Shparlinski
2 Estimation de la fonction de Tchebycheff θ sur le k-ième nombre premier et grandes valeurs de la fonction ω(n) nombre de diviseurs premiers de n – Guy Robin - 1983
40 Searching for Primitive Roots in Finite Fields – Victor Shoup - 1992
32 Field testing for cosmic ray soft errors in semiconductor memories – T J O’Gorman, J M Ross, A H Taber, J F Ziegler, H P Muhlfeld, I C J Montrose, H W Curtis, J L Walsh - 1996
16 Algorithmic Number Theory: Efficient algorithms – E Bach, J O Shallit - 1996
7 On the average of the least primitive root modulo p – P D T A Elliott, L Murata - 1997
2714 New Directions in Cryptography – Whitfield Diffie, Martin E. Hellman - 1976
604 How to generate cryptographically strong sequences of pseudorandom bits – M Blum, S Micali - 1984
847 M.: An Introduction to the Theory of Numbers – G H Hardy, E Wright - 1954
146 Seminumerical Algorithms, volume 2 of The Art of Computer Programming. Addison-Wesley, 2nd edition – Donald E Knuth - 1981