Incorporating Invariances in Support Vector Learning Machines (1996)

Cached

Download Links

by Bernhard Schölkopf , Chris Burges , Vladimir Vapnik
Citations:70 - 11 self

Documents Related by Co-Citation

8950 The Nature of Statistical Learning Theory – Vladimir N. Vapnik - 1995
2155 Support-Vector Networks – Corinna Cortes, Vladimir Vapnik - 1995
187 Extracting Support Data for a Given Task – Bernhard Schölkopf, Chris Burges, Vladimir Vapnik - 1995
1279 A training algorithm for optimal margin classifiers – Bernhard E. Boser, et al. - 1992
238 Efficient pattern recognition using a new transformation distance – P Simard, Y Le Cun, J Denker - 1993
145 Improving the Accuracy and Speed of Support Vector Machines – Chris J.C. Burges, Bernhard Schölkopf - 1997
1048 Nonlinear component analysis as a kernel eigenvalue problem – Bernhard Schölkopf, Alexander Smola, Klaus-Robert Müller - 1996
60 Geometry and invariance in kernel based methods – C J C Burges - 1999
146 Simplified Support Vector Decision Rules – Chris J.C. Burges - 1996
98 Prior Knowledge in Support Vector Kernels – Bernhard Schölkopf, Patrice Simard, Alex Smola, Vladimir Vapnik - 1998
1010 Fast training of support vector machines using sequential minimal optimization – J Platt - 1999
191 Support Vector Method for Function Approximation, Regression Estimation, and Signal Processing – Vladimir Vapnik, Steven E. Golowich, Alex Smola - 1996
126 Transformation Invariance in Pattern Recognition - Tangent Distance and Tangent Propagation – Patrice Y. Simard, Yann A. Le Cun, John S. Denker, Bernard Victorri - 1998
22 From data distributions to regularization in invariant learning – Todd K. Leen - 1995
284 Theoretical foundations of the potential function method in pattern recognition learning – M Aizerman, E Braverman, L Rozonoer - 1964
561 Training Support Vector Machines: an Application to Face Detection – Edgar Osuna, Robert Freund, Federico Girosi - 1997
146 The Connection between Regularization Operators and Support Vector Kernels – Alex J. Smola, Bernhard Schölkopf, Klaus-Robert Müller - 1998
131 Support Vector Learning – Bernhard Schölkopf - 1997
148 Support Vector Regression Machines – Harris Drucker, Chris J.C. Burges, Linda Kaufman, Chris J. C, Burges* Linda Kaufman, Alex Smola, Vladimir Vapnik - 1996