Time-Space Tradeoffs for Nondeterministic Computation (2000)

Cached

Download Links

by Lance Fortnow , Dieter Van Melkebeek
Venue:In Proceedings of the 15th IEEE Conference on Computational Complexity
Citations:23 - 2 self

Documents Related by Co-Citation

25 On the Complexity of SAT – Richard Lipton, Anastasios Viglas - 1999
22 Towards Separating Nondeterminism from Determinism – R Kannan - 1984
20 Time-Space Lower Bounds for NP-Complete Problems – D van Melkebeek - 2004
22 Nondeterministic Polynomial Time versus Nondeterministic Logarithmic Space – Lance Fortnow - 1996
29 Time-Space Tradeoffs for Satisfiability – Lance Fortnow - 1997
19 Time-Space Tradeoffs in the Counting Hierarchy – Eric Allender, Michal Koucky, V Vinay, et al. - 2001
24 Short Propositional Formulas Represent Nondeterministic Computations – S A Cook - 1988
14 Alternation and the power of nondeterminism – R Kannan - 1983
11 Speed-Up of Turing Machines with One Work Tape and a Two-Way Input Tape – W Maass, A Schorr - 1987
39 On determinism versus nondeterminism and related problems – W Paul, N Pippenger, E Szemeredi, W Trotter - 1983
14 Inductive Time-Space Lower Bounds for SAT and Related Problems – Ryan Williams - 2005
25 Time-Space Lower Bounds for Satisfiability – Lance Fortnow, Anastasios Viglas, Dieter Van Melkebeek - 2005
34 Satisfiability is quasilinear complete in NQL – C. P. Schnorr - 1978
11 Time-Space Tradeoffs for SAT on Nonuniform Machines – I Tourlakis
15 Time-Space Lower Bounds for the Polynomial-Time Hierarchy on Randomized Machines – Scott Diehl, Dieter Melkebeek - 2006
55 On time versus space – John Hopcroft, Wolfgang Paul, Leslie Valiant - 1977
10 Algorithms and Resource Requirements for Fundamental Problems – R. Ryan Williams - 2007
9 Rudimentary predicates and Turing calculations – V Nepomnjascii - 1970
71 A.R.: Provability of the pigeonhole principle and the existence of infinitely many primes – J B Paris, A J Wilkie, Woods - 1988