Sample compression, learnability, and the Vapnik-Chervonenkis dimension (1995)

Cached

Download Links

by Sally Floyd , Manfred Warmuth
Venue:MACHINE LEARNING
Citations:61 - 3 self

Documents Related by Co-Citation

55 Relating data compression and learnability – Nick Littlestone, Manfred K. Warmuth - 1986
8950 The Nature of Statistical Learning Theory – Vladimir N. Vapnik - 1995
946 On the uniform convergence of relative frequencies of events to their probabilities. Theory of Probability and its Applications – V Vapnik, A Chervonenkis - 1971
630 Learnability and the vapnikchervonenkis dimension – A Blumer, A Ehrenfeucht, D Haussler, M K Warmuth - 1989
19 Relating data compression and learnability. Unpublished manuscript http://www.cse.ucsc.edu/Ëśmanfred/pubs/lrnk-olivier.pdf – N Littlestone, M K Warmuth - 1986
1696 A Theory of the Learnable – L. G. Valiant - 1984
258 Structural Risk Minimization over Data-Dependent Hierarchies – John Shawe-taylor, Royal Holloway, Peter L. Bartlett, Robert C. Williamson, Martin Anthony - 1996
239 On the density of families of sets – N Sauer - 1972
803 Estimation of Dependencies Based on Empirical Data – V Vapnik - 1982
23 The Set Covering Machine – Mario Marchand, John Shawe-Taylor - 2002
2029 Online Learning with Kernels – Jyrki Kivinen, Alexander J. Smola, Robert C. Williamson - 2003
102 Some PAC-Bayesian Theorems – David A. McAllester - 1998
599 U.V.: An introduction to computational learning theory – M J Kearns, Vazirani - 1994
2307 A Decision-Theoretic Generalization of on-Line Learning and an Application to Boosting – Yoav Freund, Robert E. Schapire - 1997
311 Cryptographic Limitations on Learning Boolean Formulae and Finite Automata – Michael Kearns, Leslie Valiant - 1989
667 The strength of weak learnability – Robert E. Schapire - 1990
80 Tutorial on Practical Prediction Theory for Classification – John Langford - 2005
721 Boosting the margin: A new explanation for the effectiveness of voting methods – Robert E. Schapire, Peter Bartlett, Yoav Freund, Wee Sun Lee - 1997
4 learning with irrelevant attributes – PAC - 1994