Support Vector Method for Function Approximation, Regression Estimation, and Signal Processing (1996)

Cached

Download Links

by Vladimir Vapnik , Steven E. Golowich , Alex Smola
Venue:Advances in Neural Information Processing Systems 9
Citations:191 - 24 self

Documents Related by Co-Citation

8950 The Nature of Statistical Learning Theory – Vladimir N. Vapnik - 1995
1279 A training algorithm for optimal margin classifiers – Bernhard E. Boser, et al. - 1992
4786 Neural Networks for Pattern Recognition – C M Bishop - 1995
187 Extracting Support Data for a Given Task – Bernhard Schölkopf, Chris Burges, Vladimir Vapnik - 1995
146 Simplified Support Vector Decision Rules – Chris J.C. Burges - 1996
284 Theoretical foundations of the potential function method in pattern recognition learning – M Aizerman, E Braverman, L Rozonoer - 1964
145 Improving the Accuracy and Speed of Support Vector Machines – Chris J.C. Burges, Bernhard Schölkopf - 1997
156 LOQO: An interior point code for quadratic programming – Robert J. Vanderbei - 1994
250 An Improved Training Algorithm for Support Vector Machines – Edgar Osuna, Robert Freund, Federico Girosi - 1997
2155 Support-Vector Networks – Corinna Cortes, Vladimir Vapnik - 1995
77 On a Kernel-based Method for Pattern Recognition, Regression, Approximation, and Operator Inversion – Alex J. Smola, Bernhard Schölkopf - 1997
131 Support Vector Learning – Bernhard Schölkopf - 1997
777 Theory of reproducing kernels – N Aronszajn - 1950
1048 Nonlinear component analysis as a kernel eigenvalue problem – Bernhard Schölkopf, Alexander Smola, Klaus-Robert Müller - 1996
129 Predicting Time Series with Support Vector Machines – Muller Smola, A. J. Smola, G. Ratsch, B. Scholkopf, J. Kohlmorgen, V. Vapnik - 1997
205 An equivalence between sparse approximation and Support Vector Machines – Federico Girosi - 1997
52 Estimation of Dependences Based on Empirical Data (in Russian – V Vapnik - 1979
823 On the regularization of ill-posed problems – A N Tikhonov - 1963
125 Comparing Support Vector Machines with Gaussian Kernels to Radial Basis Function Classifiers – Bernhard Schölkopf, K. Sung, C. Burges, F. Girosi, P. Niyogi, T. Poggio, V. Vapnik - 1997