On the Accuracy of Stochastic Complexity Approximations (1997)

by Petri Kontkanen , Petri Myllymäki , Tomi Silander , Henry Tirri
Venue:IN A. GAMMERMAN (ED.), CAUSAL
Citations:3 - 3 self

Documents Related by Co-Citation

178 Efficient approximations for the marginal likelihood of Bayesian networks with hidden variables – David Maxwell Chickering, David Heckerman - 1997
38 On predictive distributions and Bayesian networks – P. Kontkanen, P. Myllymäki, T. SILANDER, H. Tirri, P. Grünwald - 2000
20 Comparing Predictive Inference Methods for Discrete Domains – Petri Kontkanen, Petri Myllymäki, Tomi Silander, Henry Tirri, Peter Grunwald - 1997
1081 A Bayesian method for the induction of probabilistic networks from data – Gregory F. Cooper, Tom Dietterich - 1992
913 Learning Bayesian networks: The combination of knowledge and statistical data – David Heckerman, David M. Chickering - 1995
2 Bayes factors (Tech – R Kass - 1994
1035 Bayesian Theory – J Bernardo, A Smith - 1994
495 Stochastic complexity – J Rissanen - 1987
2283 Estimating the dimension of a model – G Schwarz - 1978
294 Stochastic complexity in statistical inquiry – J Rissanen - 1989
276 Fisher information and stochastic complexity – J J Rissanen - 1996
3917 Pattern Classification and Scene Analysis – R O Duda, P Hart - 1973
478 Bayesian classification (AutoClass): Theory and results – P Cheeseman, J Stutz - 1995
423 Selection of relevant features and examples in machine learning – Avrim L. Blum, Pat Langley - 1997
1023 Wrappers for feature subset selection – Ron Kohavi , George H. John - 1997
93 Neural networks and the bias/variance dilemma. Neural Comput. 4: 1– 58. fish distribution – S GEMAN, E BIENENSTOCK, R DOURSAT - 1992
172 Bias plus variance decomposition for zero-one loss functions – Ron Kohavi - 1996
594 Irrelevant Features and the Subset Selection Problem – George H. John, Ron Kohavi, Karl Pfleger - 1994
63 Applied Discriminant Analysis – C J Huberty - 1994