1198

Binary codes capable of correcting deletions, insertions, and reversals
– V Levenshtein
 1966

182

Algorithms for approximate string matching
– E Ukkonen
 1985

656

The stringtostring correction problem
– R A Wagner, M J Fischer
 1974

12

Recognition of noisy subsequences using constrained edit distances
– B J Oommen
 1987

8

Time Warps,String Edits and Macromolecules: The Theory and practice of Sequence Comparison, AddisonWesley
– D Sankoff, J B Kruskal
 1983

10

The noisy substring matching problem
– R L Kashyap, B J Oommen
 1983

5

Symbolic Channel Modelling For Noisy Channels Which Permit Arbitrary Noise Distributions
– Oommen And Kashyap, B. J. Oommen, R. L. Kashyap
 1993

18

An effective algorithm for string correction using generalized edit distancesIII. Computational complexity of Xhe algorithm and some app~cations Infor~tion Sci
– R. L. Kashyap, B. J. Oommen, Communicated John, M. Richardson

29

A K Bounds for the string editing problem
– C K VONG, CHANDRA
 1974

18

Approximate string matching, Comput. Surveys
– P A V, G R Dowling
 1980

65

Computer programs for detecting and correcting spelling errors
– J L Peterson
 1980

65

Computation of normalized edit distance and applications
– A Marzal, E Vidal
 1993

39

A method for the correction of garbled words based on the levenshtein metric
– T Okuda, E Tanaka, T Kasai
 1976

176

Algorithms for the longest common subsequence problem
– Daniel S. Hirschberg
 1977

168

A fast algorithm for computing longest common subsequences
– J W Hunt, T G Szymanski
 1977

119

The string to string correction problem
– R A Wagner, M J Fisher
 1974

169

A faster algorithm computing string edit distances
– W J Masek, M S Paterson
 1980

7

Confluent String Rewriting, EATCS monographs on theoretical computer science
– Matthias Jantzen
 1988

3

eds) Syntactic and Structural
– H Bunke, A Sanfeliu
 1990
