A Concrete Final Coalgebra Theorem for ZF Set Theory (1994)

Cached

Download Links

by Lawrence C. Paulson
Venue:Types for Proofs and Programs: International Workshop TYPES ’94, LNCS 996
Citations:16 - 7 self

Active Bibliography

2 Final Coalgebras as Greatest Fixed Points in ZF Set Theory – Lawrence C. Paulson, L. C. Paulson - 1999
43 Set Theory for Verification: II - Induction and Recursion – Lawrence C. Paulson - 2000
4 A Ruby Proof System – Ole Rasmussen - 1996
1 A Deep Embedding of Z_C in Isabelle/HOL – Norbert Völker - 2001
1 Disjoint Sums over Type Classes in HOL – Norbert Völker - 1999
1 Swinging Data Types: The Dielectic between Actions and Constructors – Peter Padawitz - 1998
4 Isabelle’s isabelle’s logics: FOL and ZF – Lawrence C. Paulson, Tobias Nipkow, Markus Wenzel - 2003
12 Co-Inductive Types in Coq: An Experiment with the Alternating Bit Protocol – Eduardo Gimenez, Ecole Normale, Ecole Normale, Suprieure Lyon, Suprieure Lyon - 1995
5 Deriving and Applying Logic Program Transformers – Penny Anderson, David Basin - 1995
3 Coinduction in Coq – Yves Bertot - 2005
4 Formalising Ruby in Isabelle ZF – Ole Rasmussen - 1995
3 A Theory of Structured Model-Based Specifications in Isabelle/HOL – Thomas Santen - 1997
18 Correct and User-Friendly Implementations of Transformation Systems – Kolyang, T. Santen, B. Wolff - 1996
3 An Embedding of Ruby in Isabelle – Ole Rasmussen - 1996
6 Isabelle’s Logics: HOL – Tobias Nipkow, Lawrence C. Paulson, Markus Wenzel - 2008
Relational Analysis of (Co)inductive Predicates, (Co)algebraic Datatypes, and (Co)recursive Functions ⋆ – Jasmin Christian Blanchette
α Isabelle’s Logics: HOL 1 – Tobias Nipkow, Lawrence C. Paulson, Markus Wenzel - 2010
7 A Case Study of Co-induction in Isabelle – Jacob Frost - 1995
9 Program Development Schemata as Derived Rules – Penny Anderson, David Basin - 2000