The spectral gap for a Glauber-type dynamics in a continuous gas (2000)

Cached

Download Links

by Lorenzo Bertini , Nicoletta Cancrini , Filippo Cesi
Citations:26 - 4 self

Documents Related by Co-Citation

16 Glauber dynamics of continuous particle systems – Yuri Kondratiev, Eugene Lytvynov
80 Approach to Equilibrium of Glauber Dynamics In the One Phase Region. II: The General Case – F. Martinelli, E. Olivieri - 1994
104 Lectures on Glauber Dynamics for Discrete Spin Models – Fabio Martinelli, Dipartimentodienergetica Universitadell'aquila Italy Fabiomartinelli - 1997
41 The Logarithmic Sobolev Inequality For Discrete Spin Systems On A Lattice – Daniel W. Stroock, Boguslaw Zegarlinski - 1992
21 Quasi-factorization of the entropy and logarithmic Sobolev inequalities for Gibbs random fields – Filippo Cesi - 2001
16 Entropy inequalities for unbounded spin systems – P Dai Pra, A M Paganoni, G Posta - 2002
113 Sur les inégalités de Sobolev logarithmiques, volume 10 of Panoramas et Synthèses. Société Mathématique de – C Ané, S Blachère, D Chafaï, P Fougères, I Gentil, F Malrieu, C Roberto, G Scheffer - 2000
17 Logarithmic Sobolev Inequality for Lattice Gases with Mixing Conditions – Horng-Tzer Yau - 1995
19 On the spectral gap of Kawasaki dynamics under a mixing condition revisited – N Cancrini, F Martinelli - 2000
16 Logarithmic Sobolev inequalities for unbounded spin systems revisited – M. Ledoux, Sobolev Inequality - 2001
65 M.: Diffusions hypercontractives. In: Séminaire de Probabilités XIX, number 1123 – D Bakry, Emery - 1985
13 Hypercontractivity and spectral gap of symmetric diffusions with applications to the stochastic Ising models – Jean-Dominique Deuschel, Daniel W Stroock - 1990
7 Nearest neighbor birth and death processes on the real line – R Holley, D W Stroock - 1978
57 Spectral gap and logarithmic Sobolev inequality for Kawasaki and Glauber dynamics – S L LU, H T Ž YAU - 1993
74 Spatial birth-and-death processes – C J Preston - 1977
5 Estimate of spectral gap for continuous gas – L Wu
204 Introduction to the theory of (non-symmetric) Dirichlet forms – Z-M Ma, M Röckner - 1992
30 For 2-D lattice spin systems Weak Mixing Implies Strong Mixing – F. Martinelli, E. Olivieri, R.H. Schonmann
3 Remarks on Decay of Correlations and – B Helffer - 1998