Efficient Locally Weighted Polynomial Regression Predictions (0)

Cached

Download Links

by Andrew W. Moore , Jeff Schneider , Kan Deng
Venue:In Proceedings of the 1997 International Machine Learning Conference
Citations:79 - 11 self

Active Bibliography

E cient Locally Weighted Polynomial Regression Predictions – Andrew W. Moore, Je Schneider, Kan Deng
159 Locally Weighted Learning for Control – Christopher G. Atkeson, Andrew W. Moore, Stefan Schaal - 1996
25 Memory-Based Learning for Control – Andrew W. Moore, Christopher Atkeson, Stefan Schaal - 1995
108 Efficient Memory-based Learning for Robot Control – Andrew William Moore, Trinity Hall - 1990
251 A System for Induction of Oblique Decision Trees – Sreerama K. Murthy, Simon Kasif, Steven Salzberg - 1994
22 Density-adaptive learning and forgetting – Marcos Salganicoff, Marcos Salganico - 1993
12 Receptive Field Weighted Regression – Stefan Schaal, Christopher G. Atkeson - 1997
160 Constructive Incremental Learning from Only Local Information – Stefan Schaal, Christopher G. Atkeson - 1998
1 LAZY LEARNING: A LOCAL METHOD FOR SUPERVISED LEARNING – Gianluca Bontempi, Mauro Birattari, Hugues Bersini
3 Nonparametric regression for learning – Stefan Schaal - 1994
8 Nonparametric Regression for Learning Nonlinear Transformations – Stefan Schaal
448 Locally weighted learning – Christopher G. Atkeson, Andreww. Moore , Stefan Schaal - 1997
42 An Empirical Investigation of Brute Force to choose Features, Smoothers and Function Approximators – Andrew W. Moore, Daniel J. Hill, Michael P. Johnson - 1992
423 Selection of relevant features and examples in machine learning – Avrim L. Blum, Pat Langley - 1997
13 Robot learning by nonparametric regression – Stefan Schaal, Christopher G. Atkeson - 1994
30 Piecewise-polynomial regression trees – Probal Chaudhuri, Min-ching Huang, Wei-yin Loh, Ruji Yao - 1994
89 Very Fast EM-based Mixture Model Clustering Using Multiresolution kd-trees – Andrew Moore - 1998
95 IGTree: Using Trees for Compression and Classification in Lazy Learning Algorithms – Walter Daelemans, Antal van den Bosch, Ton Weijters - 1997
75 The Anchors Hierarchy: Using the Triangle Inequality to Survive High Dimensional Data – Andrew W. Moore - 2000