Non Linear Neurons in the Low Noise Limit: A Factorial Code Maximizes Information Transfer (1994)

by Jean-pierre Nadal , Nestor Parga
Citations:141 - 18 self

Documents Related by Co-Citation

1350 Independent component analysis: A new concept – P Comon - 1994
381 Equivariant Adaptive Source Separation – Jean-François Cardoso, Beate Laheld - 1996
1073 An information-maximization approach to blind separation and blind deconvolution – Anthony J. Bell, Terrence J. Sejnowski - 1995
510 A New Learning Algorithm for Blind Signal Separation – S. Amari, A. Cichocki, H. H. Yang - 1996
375 What is the goal of sensory coding – D J Field - 1994
194 Independent component analysis of electroencephalographic data – Tzyy-ping Jung, Scott Makeig, Anthony J. Bell - 1996
233 Could information theory provide an ecological theory of sensory processing? Network – J J Atick - 1992
115 A Class of Neural Networks for Independent Component Analysis – J Karhunen, E Oja, L Y Wang, R Vigario, J Joutsensalo - 1997
299 An information maximization approach to blind separation and blind deconvolution – A Bell, T Sejnowski - 1995
298 Self-organisation in a perceptual network – Ralph Linsker - 1988
223 Unsupervised learning – H B Barlow - 1989
477 The "Independent Components" of Natural Scenes are Edge Filters – Anthony J. Bell, Terrence J. Sejnowski - 1997
8569 Elements of Information Theory – T M Cover, J A Thomas - 1991
434 Blind separation of sources, part I: An adaptive algorithm based on neuromimetic architecture – C Jutten, J Herault - 1991
95 A Context-Sensitive Generalization of ICA – Barak Pearlmutter, Lucas Parra - 1996
202 Independent Component Analysis Using an Extended Infomax Algorithm for Mixed Sub-Gaussian and Super-Gaussian Sources – Te-won Lee, Mark Girolami, Terrence J. Sejnowski - 1999
123 A simple coding procedure enhances a neuron’s information capacity. Zeitschrift für Naturforschung – S B Laughlin - 1981
123 Independent component analysis—a new concept – P Comon - 1994
108 Maximum Likelihood and Covariant Algorithms for Independent Component Analysis – David J.C. MacKay - 1996