Differences in the effects of rounding errors in Krylov solvers for symmetric indefinite linear systems (1999)

by Gerard L.G. Sleijpen , Henk A. Van Der Vorst , Jan Modersitzki
Citations:15 - 0 self

Active Bibliography

1 The Main Effects of Rounding Errors in Krylov Solvers for Symmetric Linear Systems – Gerard L.G. Sleijpen, Henk A. van der Vorst, Jan Modersitzki - 1997
Implementation Aspects – For Eective Use
3 Parallel iterative solution methods for linear systems arising from discretized PDE's – Henk A. Van Der Vorst - 1995
48 Recent computational developments in Krylov subspace methods for linear systems – Valeria Simoncini, Daniel B. Szyld - 2007
4 Closer to the solution: Iterative linear solvers – Gene H. Golub, Henk A. Van Der Vorst - 1997
10 Residual and backward error bounds in minimum residual Krylov subspace methods – Christopher C. Paige, Zdenek Strakos - 2002
35 From Potential Theory To Matrix Iterations In Six Steps – Tobin A. Driscoll, Kim-Chuan Toh, Lloyd N. Trefethen
9 Iterative Solution of Linear Systems in the 20th Century – Yousef Saad, Henk A. van der Vorst - 2000
26 Estimates in Quadratic Formulas – Gene H. Golub, Zdenek Strakos - 1994
SHORT-TERM RECURRENCE KRYLOV SUBSPACE METHODS FOR NEARLY HERMITIAN MATRICES ∗ – Mark Embree, Josef A. Sifuentes, Kirk M. Soodhalter, Daniel B. Szyld, Fei Xue
20 Communication-Avoiding Krylov Subspace Methods – Mark Hoemmen - 2010
/ Differentiating the Method of Conjugate Gradients ∗ – Serge Gratton, Jean Tshimanga, Serge Gratton, Jean Tshimanga Ilunga - 2013
2 Deflated and augmented Krylov subspace methods: A framework for deflated . . . – Martin H. Gutknecht - 2013
105 Preconditioning techniques for large linear systems: A survey – Michele Benzi - 2002
4 A Different Approach To Bounding The Minimal Residual Norm In Krylov Methods – Ilse C. F. Ipsen - 1998
Applied Mathematics, Rice University, and can be found in the World Wide Web at http://www.caam.rice.edu/tech_reports/2011.html SHORT-TERM RECURRENCE KRYLOV SUBSPACE METHODS FOR NEARLY-HERMITIAN MATRICES ∗ – Mark Embree, Josef A. Sifuentes, Kirk M. Soodhalter, Daniel B. Szyld, Fei Xue, Mark Embree, Josef A. Sifuentes, Kirk M. Soodhalter, Daniel B. Szyld, Fei Xue - 2011
Numerical methods for large algebraic systems (wi4010) – Dr. Ir. C. Vuik - 2004
NUMERICAL SOLUTION OF EIGENVALUE PROBLEMS WITH SPECTRAL TRANSFORMATIONS – Fei Xue - 2009
7 Conjugate Gradient Algorithms with Reduced Synchronization Overhead on Distributed Memory Multiprocessors – E. F. D'Azevedo , V. L. Eijkhout , C. H. Romine - 1999