854

A formulation of the simple theory of types
– Alonzo Church
 1940

9

Formalizing undefinedness arising in calculus
– William M. Farmer
 2004

9

Probabilistic Modelling, Inference and Learning using Logical Theories
– K. S. Ng, J. W. Lloyd, W. T. B. Uther

724

M.: Isabelle/HOL  A Proof Assistant for HigherOrder Logic
– T Nipkow, L C Paulson, Wenzel
 2002

311

An Introduction to Mathematical Logic and Type Theory: To Truth Through Proof (2nd Ed
– Peter B Andrews
 2002

75

A partial functions version of Church’s simple theory of types
– William M Farmer
 1990

154

De Bruijn, Lambda calculus notation with nameless dummies: A tool for automatic formula manipulation, with application to the churchrosser theorem, Indagationes Mathematicae 34
– N G
 1972

78

Higherorder logic
– J van Benthem, K Doets
 1983

129

Blog: Probabilistic models with unknown objects
– Brian Milch, Bhaskara Marthi, Stuart Russell, David Sontag, Daniel L. Ong, Andrey Kolobov
 2005

54

Church: A language for generative models
– Noah D. Goodman, Vikash K. Mansinghka, Daniel M. Roy, Keith Bonawitz, Joshua B. Tenenbaum
 2008

4

Classical logic ii – higherorder logic
– S Shapiro
 2001

5

Probabilistic Reasoning in a Classical Logic
– K S Ng, J W Lloyd
 2009

272

An Analysis of FirstOrder Logics of Probability
– Joseph Y. Halpern
 1990

156

Reasoning about Knowledge and Probability
– Ronald Fagin, Joseph Y. Halpern
 1994

180

Completeness in the theory of types
– L Henkin
 1950

12

STMM: A Set Theory for Mechanized Mathematics
– William M. Farmer
 2000

86

Maple V Language Reference Manual
– B W Char
 1991

71

tps: A theorem proving system for classical type theory
– Peter B. Andrews, Matthew Bishop, Sunil Issar, Dan Nesmith, Frank Pfenning, Hongwei Xi
 1996

473

The Calculus of Constructions
– T Coquand, G Huet
 1988
