845

A Formulation of the Simple Theory of Types
– A Church
 1940

8

Formalizing undefinedness arising in calculus
– William M. Farmer
 2004

9

Probabilistic Modelling, Inference and Learning using Logical Theories
– K. S. Ng, J. W. Lloyd, W. T. B. Uther

716

Isabelle/HOL — A Proof Assistant for HigherOrder Logic, volume 2283 of LNCS
– Tobias Nipkow, Lawrence C Paulson, Markus Wenzel
 2002

304

An Introduction To Mathematical Logic and Type Theory: To Truth Through Proof
– P B Andrews
 1986

74

A Partial Functions Version of Church’s Simple Theory of Types
– W M Farmer
 1990

154

de Bruijn. Lambda calculus notation with nameless dummies, a tool for automatic formula manipulation, with application to the churchrosser theorem
– N G
 1972

77

Higherorder logic
– J van Benthem, K Doets
 1983

5

Probabilistic Reasoning in a Classical Logic
– K S Ng, J W Lloyd
 2009

180

Completeness in the Theory of Types, The
– L Henkin
 1950

129

Blog: Probabilistic models with unknown objects
– Brian Milch, Bhaskara Marthi, Stuart Russell, David Sontag, Daniel L. Ong, Andrey Kolobov
 2005

54

Church: A language for generative models
– Noah D. Goodman, Vikash K. Mansinghka, Daniel M. Roy, Keith Bonawitz, Joshua B. Tenenbaum
 2008

4

Classical logic ii – higherorder logic
– S Shapiro
 2001

270

An Analysis of FirstOrder Logics of Probability
– Joseph Y. Halpern
 1990

154

Reasoning about Knowledge and Probability
– Ronald Fagin, Joseph Y. Halpern
 1994

12

STMM: A Set Theory for Mechanized Mathematics
– William M. Farmer
 2000

86

Maple V Language Reference Manual
– B W Char
 1991

470

A calculus of constructions
– T Coquand, G Huet
 1988

69

tps: A theorem proving system for classical type theory
– Peter B. Andrews, Matthew Bishop, Sunil Issar, Dan Nesmith, Frank Pfenning, Hongwei Xi
 1996
