Hierarchical Morse Complexes for Piecewise Linear 2-Manifolds (2001)

Cached

Download Links

by Herbert Edelsbrunner , John Harer , Afra Zomorodian
Citations:47 - 5 self

Documents Related by Co-Citation

235 Topological Persistence and Simplification – Herbert Edelsbrunner, David Letscher, Afra Zomorodian - 2000
523 Morse Theory – J MILNOR - 1963
53 G.: Detection and visualization of closed streamlines in planar flows – T WISCHGOLL, SCHEUERMANN
119 Contour Trees and Small Seed Sets for Isosurface Traversal – Marc Van Kreveld, René van Oostrum, Chandrajit Bajaj, Valerio Pascucci, Dan Schikore - 1997
131 Computing Contour Trees in All Dimensions – Hamish Carr, Jack Snoeyink, Ulrike Axen - 1999
142 Morse theory for cell complexes – R Forman - 1998
817 Algebraic Topology – A Hatcher - 2002
25 Vector field editing and periodic orbit extraction using morse decomposition – Guoning Chen, Konstantin Mischaikow, Robert S. Laramee, Paweł Pilarczyk, Eugene Zhang - 2007
2078 Marching cubes: A high resolution 3D surface construction algorithm – William E. Lorensen, Harvey E. Cline - 1987
134 L.: Representation and display of vector field topology in fluid flow data sets – J L HELMAN, HESSELINK - 1989
93 An Incremental Algorithm for Betti Numbers of Simplicial Complexes – Cecil Jose A. Delfinado, Herbert Edelsbrunner - 1993
80 Surface coding based on morse theory – Yoshihisa Shinagawa, Yannick L Kergosien, Tosiyasu L Kunii - 1991
59 H.: A topology simplification method for 2D vector fields – X TRICOCHE, G SCHEUERMANN, HAGEN
15 Combinatorial vector fields and dynamical systems. Mathematische Zeitschrift 228 – R FORMAN - 1998
55 Continuous Topology Simplification of Planar Vector Fields – X Tricoche, G Scheuermann, H Hagen - 2001
62 Visualizing Nonlinear Vector Field Topology – Gerik Scheuermann, Heinz Krüger, Martin Menzel, Alyn P. Rockwood - 1999
54 COMPUTATIONAL TOPOLOGY – Tamal K. Dey, Herbert Edelsbrunner , Sumanta Guha
18 Efficient Morse Decompositions of Vector Fields – Guoning Chen, Konstantin Mischaikow, Robert S. Laramee, Eugene Zhang
56 les points singuliers d’une forme de pfaff complètement intégrable ou d’une fonction numérique – Sur - 1946