The dichotomy between structure and randomness, arithmetic progressions, and the primes

Cached

Download Links

by Terence Tao
Citations:19 - 1 self

Documents Related by Co-Citation

232 On sets of integers containing no k elements in arithmetic progression, Acta Arithmetica 27 – E Szemerédi - 1975
99 Additive Combinatorics – T Tao, V H Vu - 2006
150 The primes contain arbitrarily long arithmetic progressions – Ben Green, Terence Tao
137 A NEW PROOF OF SZEMERÉDI’S THEOREM – W. T. Gowers - 2001
68 Regularity lemma for k-uniform hypergraphs, Random Structures and Algorithms – Vojtěch Rödl, Jozef Skokan - 2004
18 The Green-Tao Theorem on arithmetic progressions in the primes: an ergodic point of view – Bryna Kra - 2005
70 The counting lemma for regular k-uniform hypergraphs. Random Structures and Algorithms – Brendan Nagle, Vojtech Rodl, Mathias Schacht
97 Hypergraph regularity and the multidimensional Szemerédi theorem – T Gowers
47 A variant of the hypergraph removal lemma – Terence Tao - 2006
140 Ergodic behavior of diagonal measures and a theorem of Szemerédi on arithmetic progressions – H Furstenberg - 1977
85 On some sequences of integers – P. Erdős, Mordechai Lewin - 1936
157 Efficient Testing of Large Graphs – Noga Alon, Eldar Fischer, Michael Krivelevich, Mario Szegedy
138 On certain sets of integers – K F Roth - 1953
144 Regular partitions of graphs, in: Problèmes combinatoires et théorie des graphes – E Szemerédi - 1978
46 counting and regularity for 3-uniform hypergraphs – T Gowers, Quasirandomness
110 A NEW PROOF OF SZEMERÉDI’S THEOREM FOR ARITHMETIC PROGRESSIONS OF LENGTH FOUR – W. T. Gowers - 1998
421 Property Testing and its connection to Learning and Approximation – Oded Goldreich, Shafi Goldwasser, Dana Ron
21 A correspondence principle between (hyper)graph theory and probability theory, and the (hyper)graph removal lemma, preprint – Terence Tao
52 On sets of integers containing no four elements in arithmetic progression – E Szemerédi - 1969