232

On sets of integers containing no k elements in arithmetic progression, Acta Arithmetica 27
– E Szemerédi
 1975

99

Additive Combinatorics
– T Tao, V H Vu
 2006

150

The primes contain arbitrarily long arithmetic progressions
– Ben Green, Terence Tao

137

A NEW PROOF OF SZEMERÉDI’S THEOREM
– W. T. Gowers
 2001

68

Regularity lemma for kuniform hypergraphs, Random Structures and Algorithms
– Vojtěch Rödl, Jozef Skokan
 2004

18

The GreenTao Theorem on arithmetic progressions in the primes: an ergodic point of view
– Bryna Kra
 2005

70

The counting lemma for regular kuniform hypergraphs. Random Structures and Algorithms
– Brendan Nagle, Vojtech Rodl, Mathias Schacht

97

Hypergraph regularity and the multidimensional Szemerédi theorem
– T Gowers

47

A variant of the hypergraph removal lemma
– Terence Tao
 2006

140

Ergodic behavior of diagonal measures and a theorem of Szemerédi on arithmetic progressions
– H Furstenberg
 1977

85

On some sequences of integers
– P. Erdős, Mordechai Lewin
 1936

157

Efficient Testing of Large Graphs
– Noga Alon, Eldar Fischer, Michael Krivelevich, Mario Szegedy

138

On certain sets of integers
– K F Roth
 1953

144

Regular partitions of graphs, in: Problèmes combinatoires et théorie des graphes
– E Szemerédi
 1978

46

counting and regularity for 3uniform hypergraphs
– T Gowers, Quasirandomness

110

A NEW PROOF OF SZEMERÉDI’S THEOREM FOR ARITHMETIC PROGRESSIONS OF LENGTH FOUR
– W. T. Gowers
 1998

421

Property Testing and its connection to Learning and Approximation
– Oded Goldreich, Shafi Goldwasser, Dana Ron

21

A correspondence principle between (hyper)graph theory and probability theory, and the (hyper)graph removal lemma, preprint
– Terence Tao

52

On sets of integers containing no four elements in arithmetic progression
– E Szemerédi
 1969
