88

Edinburgh LCF: A Mechanised Logic
– M J C Gordon, R Milner, C P Wadsworth
 1979

502

Introduction to HOL: A theorem proving environment for higherorder logic
– Michael J C Gordon, Thomas F Melham
 1993

854

A formulation of the simple theory of types
– Alonzo Church
 1940

724

M.: Isabelle/HOL  A Proof Assistant for HigherOrder Logic
– T Nipkow, L C Paulson, Wenzel
 2002

48

A Functional Approach to Programming
– Guy Cousineau, Michel Mauny
 1998

31

A MachineChecked Theory of Floating Point Arithmetic
– John Harrison
 1999

132

Edinburgh LCF: A Mechanised Logic of Computation. LNCS 78
– M J C Gordon, R Milner, C P Wadsworth
 1979

84

Theorem Proving with the Real Numbers
– John Robert Harrison
 1996

206

PVS: Combining Specification, Proof Checking, and Model Checking
– S. Owre, S. Rajan, J. M. Rushby, N. Shankar, M. Srivas
 1996

42

Inductive datatypes in HOL  lessons learned in FormalLogic Engineering
– Stefan Berghofer, Markus Wenzel
 1999

311

An Introduction to Mathematical Logic and Type Theory: To Truth Through Proof (2nd Ed
– Peter B Andrews
 2002

24

Efficiency in a FullyExpansive Theorem Prover
– Richard John Boulton, Richard John Boulton
 1993

696

A Framework for Defining Logics
– Robert Harper , Furio Honsell, Gordon Plotkin
 1993

204

CVC Lite: A new implementation of the cooperating validity checker
– Clark Barrett, Sergey Berezin
 2004

1290

A Structural Approach to Operational Semantics
– G. D. Plotkin
 1981

5

A mechanically checked proof of IEEE compliance of a registertransferlevel specification of the AMDk7 floatingpoint multiplication, division, and square root instructions
– D Rusinoff
 1998

19

Proving the IEEE Correctness of Iterative FloatingPoint Square Root, Divide, and Remainder Algorithms
– Marius CorneaHasegan

10

Le langage Caml. Intereditions
– X Leroy, P Weis
 1993

184

Isabelle: The next 700 theorem provers
– L C Paulson
 1990
