The primes contain arbitrarily long arithmetic progressions

by Ben Green , Terence Tao
Venue:Ann. of Math
Citations:150 - 26 self

Documents Related by Co-Citation

137 A NEW PROOF OF SZEMERÉDI’S THEOREM – W. T. Gowers - 2001
232 On sets of integers containing no k elements in arithmetic progression, Acta Arithmetica 27 – E Szemerédi - 1975
76 An ergodic Szemer'edi theorem for commuting transformations – H. Furstenberg, Y. Katznelson, Y. Katznelson - 1979
78 Nonconventional ergodic averages and nilmanifolds – B Host, B Kra
140 Ergodic behavior of diagonal measures and a theorem of Szemerédi on arithmetic progressions – H Furstenberg - 1977
97 Hypergraph regularity and the multidimensional Szemerédi theorem – T Gowers
36 Extremal problems on set systems, Random Structures Algorithms 20 – P Frankl, V Rödl - 2002
34 A quantitative ergodic theory proof of Szemerédi’s theorem – Terence Tao - 2004
35 Applications of the regularity lemma for uniform hypergraphs – Vojtěch Rödl, Jozef Skokan - 2006
70 The counting lemma for regular k-uniform hypergraphs. Random Structures and Algorithms – Brendan Nagle, Vojtech Rodl, Mathias Schacht
18 The Gaussian primes contain arbitrarily shaped constellations – Terence Tao
92 Triple systems with no six points carrying three triangles – IZ Ruzsa - 1978
46 UNIVERSAL CHARACTERISTIC FACTORS AND FURSTENBERG AVERAGES – T. Ziegler - 2004
110 A NEW PROOF OF SZEMERÉDI’S THEOREM FOR ARITHMETIC PROGRESSIONS OF LENGTH FOUR – W. T. Gowers - 1998
226 Recurrence in Ergodic Theory and Combinatorial Number Theory – H Furstenberg - 1981
42 On certain sets of positive density – P Varnavides - 1959
209 Szemerédi's Regularity Lemma and Its Applications in Graph Theory – János Komlós, Miklós Simonovits - 1996
12 Note on a generalization of Roth’s theorem,Discrete and computational geometry, 825–827, Algorithms Combin. 25 – J Solymosi - 2003
52 On sets of integers containing no four elements in arithmetic progression – E Szemerédi - 1969