The primes contain arbitrarily long arithmetic progressions

by Ben Green , Terence Tao
Venue:Ann. of Math
Citations:161 - 26 self

Documents Related by Co-Citation

230 On sets of integers containing no k elements in arithmetic progression, Acta Arithmetica 27 – E Szemerédi - 1975
137 A NEW PROOF OF SZEMERÉDI’S THEOREM – W. T. Gowers - 2001
76 An ergodic Szemer'edi theorem for commuting transformations – H. Furstenberg, Y. Katznelson, Y. Katznelson - 1979
138 Ergodic behavior of diagonal measures and a theorem of Szemerédi on arithmetic progressions – H Furstenberg - 1977
94 Regularity and the multidimensional Szemerédi Theorem – “Hypergraph Gowers
78 Nonconventional ergodic averages and nilmanifolds – B Host, B Kra
66 The counting lemma for regular k-uniform hypergraphs – Brendan Nagle, Vojtech Rödl, Mathias Schacht - 2004
33 Applications of the Regularity Lemma for UNIFORM HYPERGRAPHS – Vojtěch Rödl, Jozef Skokan - 2004
726 Proof verification and hardness of approximation problems – Sanjeev Arora, Carsten Lund, Rajeev Motwani, Madhu Sudan, Mario Szegedy - 1992