When Is a Container a Comonad?

by Danel Ahman , James Chapman , Tarmo Uustalu
Citations:2 - 2 self

Active Bibliography

1 A Categorical Treatment of Ornaments – Pierre-évariste Dagand, Conor Mcbride
Deciding Properties of Lists using Containers – Rawle Prince
10 Continuous functions on final coalgebras – Neil Ghani, Peter Hancock, Dirk Pattinson - 2007
CATEGORICAL LOGIC AND PROOF THEORY EPSRC INDIVIDUAL GRANT REPORT – GR/R95975/01 – Nicola Gambino
Bag Equivalence via a Proof-Relevant Membership Relation – Nils Anders Danielsson
Small Induction Recursion – Peter Hancock, Conor Mcbride, Lorenzo Malatesta, Thorsten Altenkirch
4 Generic programming with dependent types – Thorsten Altenkirch, Conor Mcbride, Peter Morris - 2006
7 Derivatives of containers – Michael Abbott, Thorsten Altenkirch, Neil Ghani, Conor Mcbride - 2003
7 ∂ for Data: Differentiating Data Structures – Michael Abbott, Neil Ghani, Thorsten Altenkirch, Conor Mcbride
1 Higher-Order Containers – Thorsten Altenkirch, Paul Levy, Sam Staton
Should I use a Monad or a Comonad? Draft – Last updated June 16, 2012 – Dominic Orchard
Proving Properties About Functions on Lists Involving Element Tests – Daniel Seidel, Janis Voigtländer
26 Wellfounded Trees and Dependent Polynomial Functors – Nicola Gambino, Martin Hyland - 2004
2 Polynomial functors and polynomial monads – Nicola Gambino, Joachim Kock - 2009
Higher Order Containers – Thorsten Altenkirch, Paul Levy, Sam Staton
unknown title – Fredrik Nordvall Forsberg, Anton Setzer
MFPS 2009 Continuous Functions on Final Coalgebras – Neil Ghani, Peter Hancock, Dirk Pattinson
1 When is an abstract data type a functor? – Pablo Nogueira
2 Constructive membership predicates as index – James Caldwell