Exploiting Syntactic Structure for Natural Language Modeling (2000)

Cached

Download Links

by Ciprian Chelba
Citations:29 - 0 self

Documents Related by Co-Citation

738 Statistical Methods for Speech Recognition – F Jelinek - 2001
850 An Empirical Study of Smoothing Techniques for Language Modeling – Stanley F. Chen - 1998
87 Immediate-Head Parsing for Language Models – Eugene Charniak - 2001
66 Probabilistic Top-Down Parsing and Language Modeling – Brian Roark - 2004
8058 Maximum likelihood from incomplete data via the EM algorithm – A. P. Dempster, N. M. Laird, D. B. Rubin - 1977
821 A Maximum-Entropy-Inspired Parser – Eugene Charniak - 1999
2102 Building a Large Annotated Corpus of English: The Penn Treebank – Mitchell P. Marcus, Beatrice Santorini, Mary Ann Marcinkiewicz - 1993
338 Interpolated estimation of markov source parameters from sparse data,” Pattern Recognit. Practice – F Jelinek, E L Mercer - 1980
1470 BLEU: a Method for Automatic Evaluation of Machine Translation – Kishore Papineni, Salim Roukos, Todd Ward, Wei-jing Zhu - 2002
755 SRILM -- An extensible language modeling toolkit – Andreas Stolcke - 2002
177 Adaptive Statistical Language Modeling: A Maximum Entropy Approach – Ronald Rosenfeld, Jaime Carbonell, Alexander Rudnicky - 1994
147 Two decades of statistical language modeling: Where do we go from here – Ronald Rosenfeld - 2000
955 Head-Driven Statistical Models for Natural Language Parsing – Michael Collins, Michael Collins - 1999
25 The SuperARV language model: Investigating the effectiveness of tightly integrating multiple knowledge sources – Wen Wang, Mary P. Harper - 2002
26 A Study on Richer Syntactic Dependencies for Structured Language Modeling – Peng Xu, Ciprian Chelba, Frederick Jelinek - 2002
42 Structured language modeling. Computer Speech and Language – C Chelba, F Jelinek - 2000
363 A hierarchical phrase-based model for statistical machine translation – David Chiang - 2005
189 Statistical Significance Tests for Machine Translation Evaluation – Philipp Koehn - 2004
446 Unsupervised Learning by Probabilistic Latent Semantic Analysis – Thomas Hofmann - 2001