Proving the IEEE Correctness of Iterative Floating-Point Square Root, Divide, and Remainder Algorithms

by Marius Cornea-Hasegan
Citations:22 - 2 self

Documents Related by Co-Citation

541 Introduction to HOL: A Theorem Proving Environment for Higher Order Logic.” Cambridge – M J C Gordon, T F Melham - 1993
92 Theorem Proving with the Real Numbers – John Robert Harrison - 1996
32 Defining the IEEE-854 Floating-Point Standard in PVS – Paul S. Miner - 1995
960 An Introduction to the Theory of Numbers – G Hardy, E Wright - 1979
773 A machine program for theorem proving – M Davis, G Longemann, D Loveland - 1962
852 Design and synthesis of synchronization skeletons using branching time temporal logic – E M Clarke, E A Emerson - 1981
648 Symbolic Model Checking: 10^20 States and Beyond – J. R. Burch, E. M. Clarke, K. L. McMillan, D. L. Dill, L. J. Hwang - 1992
3153 Graph-based algorithms for Boolean function manipulation – Randal E. Bryant - 1986
1372 Symbolic Model Checking – K L McMillan - 1993