86

Theorem Proving with the Real Numbers
– John Robert Harrison
 1996

29

Defining the IEEE854 FloatingPoint Standard in PVS
– Paul S. Miner
 1995

18

Formal verification of IA64 division algorithms
– John Harrison
 2000

26

Computation of elementary functions on the
– P W Markstein
 1990

30

Formally verifying ieee compliance of floatingpoint hardware
– John O’Leary, Xudong Zhao, Rob Gerth, CarlJohan H Seger
 1999

83

Every prime has a succinct certificate
– V R Pratt
 1975

33

Worst Cases for Correct Rounding of the Elementary Functions in Double Precision
– Jeanmichel Muller, Vincent Lefevre JeanMichel, Vincent Lefèvre, Jeanmichel Muller Ý, Thème Génie Logiciel, Projet Arénaire

70

IA64 and Elementary Functions: Speed and Precision
– P Markstein
 2000

5

A mechanically checked proof of IEEE compliance of a registertransferlevel specification of the AMDk7 floatingpoint multiplication, division, and square root instructions
– D Rusinoff
 1998

57

The IA64 architecture at work
– C Dulong
 1998

500

T.: Introduction to HOL: A Theorem Proving Environment for Higher Order Logic: Cambridge
– M Melham
 1993

31

A MachineChecked Theory of Floating Point Arithmetic
– John Harrison
 1999

31

Floating point verification in HOL Light: the exponential function
– John Harrison
 1997

14

C.J.H.: Formally Verifying
– J O’Leary, X Zhao, R Gerth, Seger
 1999

48

A Functional Approach to Programming
– Guy Cousineau, Michel Mauny
 1998

9

for binary floating point arithmetic, ANSI/IEEE Std 754
– IEEE Standard
 1985

69

HOL Light: A tutorial introduction
– John Harrison
 1996

30

A Mechanically Checked Proof of the Correctness of the Kernel of the AMD5K86 FloatingPoint Division Algorithm
– J Strother Moore, Tom Lynch, Matt Kaufmann
 1996

11

Verifying the accuracy of polynomial approximations in HOL
– John Harrison
 1997
