Approximate solution techniques for factored first-order MDPs (2007)

by Scott Sanner , Craig Boutilier
Venue:In (ICAPS-07), 288
Citations:11 - 3 self

Documents Related by Co-Citation

134 Symbolic Dynamic Programming for First-order MDPs – Craig Boutilier - 2001
1202 Markov Decision Processes: Discrete Stochastic Dynamic Programming – M L Puterman - 1994
261 Algebraic Decision Diagrams and their Applications – R. Iris Bahar, Erica A. Frohm, Charles M. Gaona, Gary D. Hachtel, Enrico Macii, Abelardo Pardo, Fabio Somenzi - 1993
417 Decision-Theoretic Planning: Structural Assumptions and Computational Leverage – Craig Boutilier, Thomas Dean, Steve Hanks - 1999
178 SPUDD: Stochastic planning using decision diagrams – Jesse Hoey, Robert St-aubin, Alan Hu, Craig Boutilier - 1999
11 Raedt. Bellman goes relational – K Kersting, M Van Otterlo, L De - 2004
16 FluCaP: a heuristic search planner for first-order MDPs – S Hölldobler, E Karabaev, O Skvortsova - 2006
35 Bellman goes Relational – Kristian Kersting, Martijn Van Otterlo, Luc De Raedt - 2004
599 The FF planning system: Fast plan generation through heuristic search – Jörg Hoffmann, Bernhard Nebel - 2001
50 FF-Replan: A baseline for probabilistic planning – Sungwook Yoon, Alan Fern, Robert Givan - 2007
94 Generalizing plans to new environments in relational MDPs – Carlos Guestrin, Daphne Koller, Chris Gearhart, Neal Kanodia - 2003
416 Knowledge in Action: Logical Foundations for Specifying and Implementing Dynamical Systems – R Reiter - 2001
112 Approximate Policy Iteration with a Policy Language Bias – Alan Fern, Sungwook Yoon, Robert Givan - 2003
2593 On the theory of dynamic programming – Richard E Bellman - 1952
8 Action-space partitioning for planning – N H Gardiol, L P Kaelbling - 2007
12 Goal-directed decision making in prefrontal cortex: A computational framework – Matthew Botvinick, James An
45 Probabilistic inference for solving discrete and continuous state Markov decision processes – Marc Toussaint, Amos Storkey - 2006
15 Online learning and exploiting relational models in reinforcement learning – Tom Croonenborghs, Jan Ramon, Hendrik Blockeel, Maurice Bruynooghe - 2007
44 Learning symbolic models of stochastic domains – Hanna M. Pasula, Luke S. Zettlemoyer, Leslie Pack Kaelbling